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Abstract
A framework is developed to include the preferred path of microscopic
tumor invasion along muscle fibers in radiation target volumes. Fol-
lowing the novel idea that the directionality of muscle fibers inside
the muscle can be represented by a flow velocity field, fluid flow sim-
ulations are performed with a computational fluid dynamics solver
using the finite-elements method. The flow velocity fields are then
embedded in a shortest path algorithm to model the microscopic infil-
tration around the gross tumor. The model assumes that the preferred
path of microscopic tumor invasion is along the dominant muscle fiber
direction estimated from the velocity field. The method was tested on
a sacral chordoma tumor, a malignant tumor originating in the pelvis
with suspected microscopic invasion of the gluteal muscles.

1 Introduction

Chondrosarcoma is a type of cancer that originates in car-
tilage cells and typically develops in bone structures of the
pelvis, femur, upper arm, or shoulder blade [1]. One of the
major uncertainties in the treatment of chondrosarcomas is
how to account for microscopic tumor invasion into the sur-
rounding musculature. It is known that tumor cells encounter
greater resistance in the transverse direction of the muscle
fiber than in the longitudinal direction [2]. Therefore, to
maximize the therapeutic effect, one should use radiation
target volumes with more generous margins in the longitu-
dinal direction of the muscle fiber. However, defining such
target volumes is a real challenge because CT images have
poor soft tissue contrast and therefore cannot provide much
intramuscular information. In addition, the typical clinical ex-
pansion algorithms that are used to generate radiation target
volumes are unable to account for muscle-specific orienta-
tion and muscle fiber architecture. As a result, physicians are
currently limited to manually delineating target volumes or
using expansions along the major anatomical axes, which is
an oversimplification of the complex muscle anatomy.
A promising computational approach in the field of biome-
chanics is the analysis of muscle force generation by repre-
senting muscle fibers as an idealized flow of a fluid within the
boundaries of the muscle surface. In [3, 4], the equivalence
was made between muscle fibers connecting bones through
the origin and insertion with an irrotational and incompress-
ible flow between a source and drain. It was shown that the
orientation of the vector field from such fluid flow simula-
tions can reproduce the microscopic muscle fiber orientations
obtained from the patient’s diffusion tensor image, which is

a direct representation of the muscle microstructure.
The goal of this study is to combine recent advances in au-
tomatic expansion algorithms and fluid flow simulations to
create radiation target volumes with local muscle fiber orien-
tation into a single framework. The framework is tested for
a sacral chordoma, a type of chondrosarcoma that develops
in the sacrum with suspected infiltration in the surrounding
gluteal muscles.

2 Materials and Methods

This section presents the framework for obtaining radiother-
apy target volumes with muscle fiber information. The main
goal is to generate the clinical target volume (CTV), which
includes the volume of suspected microscopic tumor invasion.
The CTV is obtained as a geometric expansion of the gross
tumor volume (GTV), where the GTV-to-CTV expansion
is spatially modulated according to the preferred mode of
tumor invasion along the muscle fiber direction. The calcu-
lation is based on volume delineations of muscles and their
corresponding attachment sites (muscle origins and inser-
tions). Here we use a patient, called the template patient,
with the complete set of delineations available, which serves
as the basis for the flow calculations. The results can then be
mapped to other different patients, called target patients, that
do not have attachment delineations available. In short, the
workflow consists of (a) performing fluid flow simulations
in the template patient for the different gluteal muscles, (b)
mapping the flow fields onto the target patient, and (c) gener-
ating radiation target volumes by including the mapped flow
fields in a shortest path calculation [5]. The first step requires
the use of the Finite Element Method (FEM) in a mesh-like
geometry as explained below.

2.1 Flow simulation & mesh generation

The flow in a simply-connected domain can be described as
a potential flow, through the use of a velocity potential φ . As-
suming that the flow is both irrotational and incompressible,
the Laplacian, ∇2, of the velocity potential must be zero and
the problem reduces to solving a Neumann boundary value



XXth International Conference on the use of Computers in Radiation therapy 8 - 11 July 2024, Lyon, France

problem for the Laplace equation:

∇
2
φ = 0, in muscle

∇φ ·n = 0 on muscle
(1)

n denotes the vector normal to the muscle surface, so the
second equation imposes a zero flux condition at the muscle
periphery. Fixed Dirichlet boundary conditions are imposed
at the origin and insertion sites in order to simulate a flow
between a source (origin) and drain (insertion):

φ = a in origin

φ = b in insertion
(2)

with scalar values a and b. Since only the orientation of the
potential flow is relevant to our problem, the values for a
and b can be arbitrarily chosen as long as a ̸= b. Finally, the
flow velocity field v is obtained as v = ∇φ . Fig. 1 A) gives a
schematic overview of the problem statement.
All binary volumetric structures extracted from the patient
dicom files were converted into volume meshes in Python.
First, the skimage marching cubes algorithm is used to find
a surface mesh from binary volumetric data. Then, the py-
galmesh library is used to generate a volumetric tetrahedral
mesh from the surface mesh [6], which is used as the domain
for the FEM computation (see Fig. 1 B). Eq. (1) is solved
using the open-source FEM computing platform FEniCS [7].

origin

insertion

A) B)

muscle
origin
insertion

Figure 1: A) Schematic drawing of the Laplacian flow simula-
tion problem. B) Example of the template gluteus medius mesh
structures showing the muscle, origin and insertions (top), and
associated CT image with structure segmentations (bottom).

2.2 Shortest path calculation & volume generation

A GTV-to-CTV margin can be obtained by using a shortest
path calculation with GTV at the origin. Within this frame-
work, the CTV is defined as an iso-distance contour in the 3D
shortest distance map. The shortest distance S can be found
as a solution to the Eikonal equation [5, 8]:

∇
TS ·G−1 ·∇S = 1, (3)

where G is a positive semidefinite tensor of second order,
called the Riemann metric tensor, or simply the metric. The

metric plays an important role because it models the sus-
pected tumor infiltration distance in a tissue. The relationship
between the metric and the velocity field can be established
by identifying the orientation of the velocity field as the orien-
tation of greatest distance increase in the space defined by the
metric. One way to formalize this relationship between G−1

and v is by first, creating a 3×3 tensor as the outer product,
⊗, of v with itself and performing a spectral decomposition:

v⊗v = Q ·Λ ·Q−1, (4)

with Q and Λ the matrices of eigenvectors and eigenvalues,
respectively. Second, replacing Λ by a parameterized diago-
nal matrix diag(α,1,1) and defining:

G−1 ≡ Q ·diag(α,1,1) ·Q−1. (5)

α is a dimensionless free parameter that controls the relative
distance increase along the principal eigenvector which, in
this context, corresponds to the preference for tumor invasion
along the dominant muscle fiber direction.
The shortest path equation was solved using the Python-based
fast marching solver HamiltonFastMarching [9].

2.3 Image registration & velocity field transformation

Image registration is used to transform the flow velocity fields
from the template patient to the target patient for insertion
in (3). Let v1, ...,vn be the flow velocity fields for a set of
n muscle compartments in the template patient. n separate
displacement vector fields between the muscle compartment
pairs. The transformed flow velocity fields in the target
patient are then obtained by multiplying each velocity field by
the inverse Jacobian matrix J of its associated displacement
vector field, ṽ = J−1 · v [10]. Similarly, the G−1 can be
transformed directly according to the tensor transformation
rule:

G̃−1 = J−1 ·G−1 · J−T. (6)

Eq. 6 allows the mapping of velocity fields between different
patients by accounting for geometric differences such as
differences in size and shape of muscles. Therefore, replacing
G−1 by G̃−1 in (3) enables the calculation of a 3D shortest
distance map in the target patient image.
Deformable image registrations between muscles was per-
formed using DIPY (version 1.6.0) [11].

2.4 Patient data

A sacral chordoma patient, with manual delineations of the
gluteus maximus, gluteus minimus and gluteus medius is
used as a template image for obtaining muscle fiber infor-
mation. The origin and insertion sites for all muscles of the
template patient were delineated by an experienced radia-
tion oncologist in our institution. Another sacral chordoma
patient without origins/insertions available was used as a tar-
get image to generate the CTV. The hip bones, which act as
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an impermeable barrier to tumor infiltration, were autoseg-
mented on the CT image using TotalSegmentator (version
2.0.5) [12].

3 Results

This section presents the results of the flow simulation in the
template patient, followed by a comparison of the CTVs in
the target patient with and without the inclusion of preferen-
tial models of tumor invasion.

3.1 Flow simulations

Fig. 2 shows the flow velocity fields in the template patient,
overlayed on the CT image for the various gluteal muscles.
As displayed, the FEM obtained smooth vector fields that
can be mapped to the target patient.

3.2 CTVs

Fig. 3 compares the CTVs in the patients with and without
muscle fiber orientation. The reference CTVs are defined
as volumes with a 10 mm margin around the GTV in non-
muscle tissue and larger margins of 20 mm and 30 mm in the
gluteal muscles. The fiber-specific CTVs were generated by
specifying a value of α > 1 in the gluteal muscles and α = 1
in the other tissues. As α increases, the model increases
its preference for muscle invasion along the muscle fiber
direction. We choose values for α equal to 4.0, and 9.1
because these specific values for α correspond to the standard
CTV ranges mentioned earlier.
Significant differences in the shape of the CTVs are observed,
especially as the CTV margins become more anisotropic.
The difference between the reference CTV and the muscle
fiber CTV was quantified using the 95% Hausdorff distance
(HD95). The HD95 was 7.6 mm, and 13.9 mm for the (10 /
20) mm and (10 / 30) mm CTVs, respectively. This means
that our proposed method has the potential to significantly
impact current CTV delineation standards.

4 Discussion

In radiation therapy, the goal is to deliver a therapeutic dose
to the CTV so that all tissues suspected of harboring tumor
cells are treated. Currently, for chondrosarcoma treatments,
the CTV is defined as a geometric expansion of the GTV
by specifying a uniform margin in the muscle compartment.
However, such an oversimplified approach does not take into
account the mode of tumor invasion along the muscle fibers.
As a result, tumorous tissue may be undertreated or radiation
may be delivered to areas that are potentially tumor-free.
This study develops a computational method to improve the
target volume definition for tumors with spread patterns along
certain predefined structures such as skeletal muscles. Spread

(a) Gluteus maximus

(b) Gluteus medius

(c) Gluteus minimus

Figure 2: The flow velocity field obtained through Laplacian flow
simulations are depicted by the red arrows within the (a) gluteus
maximus, (b) gluteus medius and (c) gluteus minimus muscles.
The flow vectors are assumed to be representative of the muscle
fiber direction.

patterns were derived from Laplacian flow simulations to ob-
tain patient-specific muscle fiber information. The Laplace
equation is a fundamental equation in physics as it arises in
a number of phenomena such as gravitational theory, elec-
trostatics, fluid mechanics, and the heat equation. In this
context, Laplace’s equation is used to simulate a laminar
flow that is representative of the directionality of the muscle
fibers inside the muscle. Formally, potential flows governed
by Laplace’s equation are solutions to the time-independent
Navier–Stokes equations for viscous (low Reynolds num-
bers), incompressible and irrotational fluids [4]. Realistic
muscle fiber trajectories can be obtained by imposing differ-
ent types of boundary conditions. First, a constant inflow and
outflow was assumed at the origin and insertion sites, and
second, a zero flux condition at the muscle periphery pre-
vented muscle fibers from leaking through the outer muscle
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(10 / 20) mm (10 / 30) mm

(a) Axial slice.

(10 / 20) mm (10 / 30) mm

(b) Coronal slice.

Figure 3: Comparison of the standard CTV with margins of (10
/ 20) mm and (10 / 30) in non-muscle / muscle tissue in green,
against the model-based CTVs in red, overlayed on the patient CT
image. The GTV and muscle masks are shown in yellow and blue,
respectively.

surface .
Once the flow fields have been computed with the FEM, in-
sertion into the shortest path algorithm enables the generation
of radiation target volumes. The shortest path map models
the preferential invasion for miscroscopic tumor invasion in
the tissues surrounding the gross tumor. Here, the flow veloc-
ity is equivalent to the presumed tumor infiltration distance
along its principal direction.
A limitation of the current implementation is that muscle
insertions are not currently delineated in clinical routine.
Therefore, the decision was made to manually delineate ori-
gins and insertions in a single patient CT image, which served
as a template to provide muscle fiber information. Automatic
segmentation of insertion sites may be an interesting avenue
for future research to further personalize the model.
Future research will focus on validating the model, and in-
troducing tumor-specific effects such as the displacement of
origin and insertion sites by the gross disease and disruptions
of muscle fibers. In prospective setting, model validation
requires the use of DTI. Alternatively, retrospectively, the
orientation and magnitude of the flow velocity fields can be
informed by areas of recurrence after treatment.

5 Conclusion

This study presents a novel framework for incorporating
the preferred path of tumor invasion into the clinical target
volume for radiotherapy treatments. The directionality of
tumor invasion was estimated using fluid flow simulations
to obtain realistic muscle fiber trajectories. The method has
the potential to improve the consistency and accuracy of the

clinical target volume, thereby reducing the physician’s time
burden.
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