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Abstract In radiation therapy, precise dose calculations are crucial for 
treatment plan improvement, relying on advanced algorithms based on 
Monte Carlo simulations. Persistent discrepancies between experimental 
data and hadronic models in particle therapy highlight the need for 
improved accuracy. This study introduces DINo (Deep learning 
Intelligence for Nuclear reactions), a deep learning algorithm designed 
to explore solutions for these challenges. DINo uses partial proton 
nuclear reactions cross-sections to extrapolate total cross-sections, 
mitigating limitations in existing models. Focused on protons, with an 
extensive representation in the TENDL nuclear data library, DINo, as a 
dense neural network, learns from TENDL's 2019 model values, 
effectively predicting total cross-sections for unexplored initial energies. 
Preliminary results tend to indicate DINo's superior predictive 
capabilities compared to the TENDL model, promising enhanced 
precision in nuclear reaction data and refined dose calculations for 
particle therapy. 

1 Introduction 
Dose calculations in radiation therapy heavily rely 

on advanced algorithms incorporating both physical and 
biological processes, based on data provided by Monte 
Carlo simulations. However, discrepancies persist between 
experimental data and hadronic models, particularly in 
nuclear reactions in particle therapy, leading to potential 
inaccuracies in dose calculations. Therefore, the 
implementation of measured data into existing codes is 
challenging but essential [6]. This abstract proposes the 
development of a deep learning algorithm called DINo 
(Deep learning Intelligence for Nuclear reactions) that 
proposes to leverage partial proton nuclear reactions cross-
sections to extrapolate total cross-sections data, mitigating 
the data limitations within current models.  

2 Materials and Methods 
The TENDL nuclear data library [1], based on 

TALYS theoretical code, includes the state of the art in 
nuclear reaction models, taking into account all major 
reaction mechanisms encountered in light particle-induced 
nuclear reactions. The library encompasses a great amount 
of proton data, leading to the choice of protons as the focal 
point for this study. Figure 1 illustrates the cross-sections 
for incident protons on a 12C target, given by the TENDL 
library, focusing on the comparison between the TENDL 
model results with experimental data from EXFOR [7] for 
the p(12C,X)11C reaction alongside with the total cross-
section. 
 

 

 
Figure 1: 11C product cross-sections and total cross-section 
for incident protons on a 12C target – TENDL model results 
compared to experimental data (data error in the order of 
2% not visible on the plot). 
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comparison between TENDL model and experimental data 
for total cross-section is 4.5±1.0. 
 
  Introduced as a dense neural network (DNN), the 
DINo algorithm learn from the TENDL 2019 model values, 
focusing on charge changing cross-section of 11C as a 
function of proton projectile initial energy, alongside with 
their corresponding total cross-section. DINo aims at 
predicting total cross-sections for initial energies not 
covered by current experimental data. On figure 3 is shown 
a simplified scheme of the algorithm global structure. 
 

 
Figure 3: DINo simplified structure 
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During the algorithm learning phase, 70% of the 
TENDL model values of 11C charge-changing cross-
sections, alongside with their corresponding initial energy, 
serve as input data. Simultaneously, the total cross-section 
values, linked to the respective initial energies, are 
designated as output. To evaluate the algorithm’s 
proficiency, 30% of the TENDL model values are reserved 
for testing at each epoch. Following 60 epochs, the 
algorithm is ready for application to experimental data.  
During the algorithm testing phase on data, it receives 
experimental values for 11C charge-changing cross-sections 
with associated initial energy, enabling it to predict the 
corresponding experimental values for total cross-sections 
at those specific initial energies.  

3 Results 
Figure 4 presents predicted experimental total 

cross-sections values by DINo alongside TENDL model 
values and actual experimental data. 

 

 
Figure 4: Total cross-section for incident protons on a 12C 
target as a function of incident energy: TENDL model 
results and DINo prediction compared to experimental data 
(data error in the order of 2% not visible on the plot). 

The comparison in Figure 5 highlights the efficacy 
of DINo predictions in relation to both TENDL model 
results and experimental data. The χ² values demonstrate a 
superior compatibility between the experimental data and 
the DINo algorithm predictions compared to the TENDL 
model.  

Indeed, the c2 between the experimental data and 
the TENDL model is, like said in previous section, 4.5 ± 1.0 
when the c2 between the experimental data and the DINo 
algorithm prediction is 2.9 ± 0.6. 
 

 
Figure 5: 11C product cross-sections and total cross-section 
for incident protons on a 12C target: TENDL model results 
and DINo prediction compared to experimental data (data 
error in the order of 2% not visible on the plot). 

 

4 Discussion 
In this study, the deep learning algorithm DINo 

exhibits enhanced predictive capabilities for total cross-
sections compared to the TENDL model. Even in the worst 
case scenario, DINo’s prediction align with TENDL’s 
performance. Indeed, the c2 of 3.5 is reached as the best 
TENDL’s performance and the worst DINo’s performance. 
In optimal situations, DINo outperforms the TENDL model 
by a factor 2.4.  

5 Conclusion 
These findings underscore the potential of the deep 

learning approach in improving the accuracy of predicting 
nuclear reaction data, in order to to enhance the precision of 
dose calculations in particle therapy. 
 

To establish the efficacy and reliability of the 
proposed algorithm in predicting missing experimental 
data, further investigations on additional charge-changing 
cross-sections and different target materials are needed. 
This study lays the foundation for future research aimed at 
expanding the scope and applicability of the deep learning 
algorithm in the realm of nuclear reactions. 
 

 

References 
[1] A.J. Koning, D. Rochman, J.-Ch. Sublet, N. Dzysiuk, M. Fleming, 
S. van der Marck, 
TENDL: Complete Nuclear Data Library for Innovative Nuclear Sci-
ence and Technology, 
Nuclear Data Sheets, Volume 155, 2019, Pages 1-55, 
ISSN 0090-3752,  
https://doi.org/10.1016/j.nds.2019.01.002.  

https://doi.org/10.1016/j.nds.2019.01.002


XXth International Conference on the use of Computers in Radiation therapy                                                                        8 - 11 July 2024, Lyon, France 
  

 
[2] Van Rossum, G. & Drake, F.L., 2009. Python 
3 Reference Manual, Scotts Valley, CA: CreateSpace. 
[3] TensorFlow Developers. (2023). TensorFlow (v2.15.0). Zenodo. 
https://doi.org/10.5281/zenodo.10126399 
 
[4] 2022-2023 FIDLE Formation – MIAI, UGA Grenoble, EFELIA 
project, CNRS 
https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home 
 
[5] “How to produce accurate inelastic cross sections from an indirect 
measurement method?”, by Kerveno, Maëlle and Henning, Greg and 
Borcea, Catalin and Dessagne, Philippe and Dupuis, Marc and Hilaire, 
Stéphane and Negret, Alexandru and Nyman, Markus and Olacel, Adina 
and Party, Eliot and Plompen, Arjan in EPJ N - Nuclear Sciences & 
Technologies 4, (2018). 10.1051/epjn/2018020 
https://hal.archives-ouvertes.fr/hal-02109918 
 
[6] Norbury JW, Battistoni G, Besuglow J, et al. Are Further Cross 
Section Measurements Necessary for Space Radiation Protection or Ion 
Therapy Applications? Helium Projectiles. Front. Phys. 2020;8:565954. 
 
[7] N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A.I. Blokhin, M. 
Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva, R.A. Forrest, T. 
Fukahori, N. Furutachi, S. Ganesan, Z. Ge, O.O. Gritzay, M. Herman, S. 
Hlavač, K. Katō, B. Lalremruata, Y.O. Lee, A. Makinaga, K. Matsumoto, 
M. Mikhaylyukova, G. Pikulina, V.G. Pronyaev, A. Saxena, O. 
Schwerer, S.P. Simakov, N. Soppera, R. Suzuki, S. Takács, X. Tao, S. 
Taova, F. Tárkányi, V.V. Varlamov, J. Wang, S.C. Yang, V. Zerkin, Y. 
Zhuang, 
Towards a More Complete and Accurate Experimental Nuclear Reaction 
Data Library (EXFOR): International Collaboration Between Nuclear 
Reaction Data Centres (NRDC), Nuclear Data Sheets, Volume 120, 
2014, Pages 272-276, ISSN 0090-3752, 
https://doi.org/10.1016/j.nds.2014.07.065. 
 

https://doi.org/10.5281/zenodo.10126399
https://gricad-gitlab.univ-grenoble-alpes.fr/talks/fidle/-/wikis/home
https://hal.archives-ouvertes.fr/hal-02109918

