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Abstract Radiation oncologists are responsible for determining the 

clinical acceptability of radiotherapy treatment plans. Their training 

typically revolves around routine clinical practice, observing the 

approval of patient plans. This approach depends on a sufficiently rich 

patient population (which is difficult for smaller clinics and less common 

cancer types) and is example-starved as the trainee typically only sees a 

single plan example for each patient.  To address this, we have developed 

techniques to rapidly create clinically realistic plans that are suboptimal 

in a controllable way. These plans can then be used to train oncologists 

to understand what dose distributions are possible, and how to spot plans 

that could be improved.  Here we first use a deep learning-based dose 

prediction to create a high-quality treatment plan (trained using only 

high-quality plans). We then increase dose by controllable amounts 

around selectable organs-at-risk.  This approach is shown to generate 

clinically realistic, but suboptimal plans, as scored by experienced 

dosimetrists. 

 

1 Introduction 

Radiotherapy plan quality and radiation oncologist 

experience directly correlate to patient outcome and quality 

of life1–4. Therefore, it is vital that the quality of the final 

approved plan be high – that is, the prescription to the target 

be met while minimizing dose delivered to healthy tissue. 

Unfortunately, the literature reveals that suboptimal plans 

are approved frequently5–8, even by experienced radiation 

oncologists. A contributing factor is the training 

environment during residency in which plan review is 

taught. Residents report the absence of examples across 

diverse treatment sites; the substantial clinical time 

pressures and high-stakes environment which make 

effective education difficult; and discontinuities introduced 

between identifying suboptimalities and making requests 

for edits and receiving the updated plan. 

 

It is important to address these challenges by providing a 

wide range of example plans that need review and 

improvement in an environment that is low-stakes and 

without the pressure to have plans approved quickly for 

treatment. Simply curating lower-quality plans would be 

infeasible, as clinics typically have limited numbers 

available and inadvertent example memorization by the 

trainees would become common. Instead, a method of 

generating clinically realistic but suboptimal plans is 

needed. To date, however, most research has focused on 

generating high-quality plans9–18. Therefore, the current 

study develops a tool to create suboptimal dose 

distributions. These will be clinically realistic and suitable 

for integration into the training curriculum, providing the 

ability for real-time education in a low-stakes environment 

with virtually limitless examples. 

2 Materials and Methods 

In this study, suboptimal plans are modeled as potentially 

ideal dose distributions to which error has been added. This 

approach allows starting with consistent, high-quality dose 

distributions, and then creating areas of suboptimality 

around select OARs.  

 

High-quality plans are required as the standard and what 

residents should be learning to achieve during plan review 

training. In this study, volume-modulated arc therapy 

(VMAT) dose distributions were predicted using the 3-

Dimensional Dense Dilated U-Net model10. Two sets of 

models were used, one for head and neck (HN) 

radiotherapy11 and the other for gynecological (GYN) 

radiotherapy12. Each set of models was previously trained 

using three-fold cross-validation on  clinical data. This 

training data was carefully selected to be high-quality based 

upon both DVH metrics as well as upon physician review 

and consisted of planning computed tomography (CT) 

images, the clinical dose map from the treatment planning 

system, planning target volume (PTV) contours of varying 

prescriptions, and organ at risk (OAR) contours. 

 

As the resultant dose distributions will be used for training, 

it is important that error be added to the high-quality dose 

predictions in a controllable manner that results in dose 

distributions free from obvious manipulation and appearing 

to have originated in the clinic. Dose changes should be 

localized to the OARs in which suboptimality is desired 

without substantial excess change elsewhere, but also 

without introducing visual errors such as introducing 

unrealistic dose gradients or other artifacts around the 

regions. To accomplish this, a convolutional technique was 

developed which adjusts changes based upon geometry – 
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that is, large changes in dose are only made near the desired 

OARs.  

 

To start, a geometric feature 𝜆𝑂𝐴𝑅 was derived for each 

group of OARs. It describes proximity to the region in 

which suboptimality is desired through a combination of the 

Euclidean distances outside the OAR boundary and a 

directionally insensitive beam’s eye view (BEV) angle. The 

geometric features were normalized to the range [0, 1], 

where 0 indicates least physical and angular distance from 

the OAR and 1 indicates greatest. Then a sigmoid-like 

function was applied with parameters controlling the full-

width half-max (FWHM) and steepness of the sigmoid 

curve 𝛽, to provide additional control over the geometric 

space in which the dose was increased. 

Equation 1 

𝑓(𝜆, 𝐹𝑊𝐻𝑀, 𝛽) =

(𝜆
−

log(2)
log(𝐹𝑊𝐻𝑀))

𝛽

(𝜆
−

log(2)
log(𝐹𝑊𝐻𝑀))

𝛽

+ (1 −  𝜆
−

log(2)
log(𝐹𝑊𝐻𝑀))

𝛽
 

As the target region contains the highest dose, a similar 

geometric feature 𝜆𝑃𝑇𝑉 was derived and normalized to the 

range [0, 0.98]. This feature indicated proximity for the 

PTV for which to make very small perturbations to the dose. 

This allowed changes to be made to the dose delivered to 

target, but not unrealistically large relative to the dose 

increase around each OAR. The final geometric feature was 

the 3-dimensional element-wise minimum of the OAR 

feature and the target feature. 

Equation 23 

𝜆 = 𝑚𝑖𝑛 (𝜆𝑂𝐴𝑅,𝑖𝑗𝑘, 𝜆𝑃𝑇𝑉,𝑖𝑗𝑘 ∀𝑖, 𝑗, 𝑘 𝑖𝑛 (𝑍, 𝑋, 𝑌)) 

Next, a kernel was designed to take this geometric 

information into account. There are two parameters for this 

kernel, geometric feature 𝜆 which varies at every step in the 

convolution, and the constant AUCm, which is always 1 or 

greater and determines the maximum area under the curve 

of the kernel and therefore the resultant dose scaling. 

Equation 4 

𝑔(𝜆, 𝐴𝑈𝐶𝑚) = 𝑠(𝜆, 𝐴𝑈𝐶𝑚) ⋅
1

∑𝑘
𝑘(𝜆) 

This may be further divided into two components. First, it 

is important that the overall kernel area under the curve 

(AUC) changes with response to geometry, so that greatest 

dose scaling is applied only near the OARs of interest. The 

linear function s(𝜆, 𝐴𝑈𝐶𝑚) = (1 − 𝐴𝑈𝐶𝑚)𝜆 + 𝐴𝑈𝐶𝑚 

controls the overall AUC of the kernel, such that it is equal 

to 1 as 𝜆 is largest (far from the OAR) and equal to AUCm 

as 𝜆 is smallest (closes to the OAR and along the BEV 

angle). 

 

The second component, the inner kernel k, is self-

normalizing to AUC=1 and changes its receptive field based 

upon geometry. At the limits of the geometric feature, k is 

the identity kernel to preserve dose as-is (𝜆 = 1), or the 

mean kernel to incorporate the most information from 

neighboring values (𝜆 = 0). 

 Equation 5 

𝑘(𝜆) =  [
1 − 𝜆 1 − 𝜆 1 − 𝜆
1 − 𝜆 1 1 − 𝜆
1 − 𝜆 1 − 𝜆 1 − 𝜆

] 

 

Finally, suboptimalities were introduced with greatest 

relative increase near the selected OARs through 

convolving the high-quality dose distribution with the 

geometry aware kernel. 

Equation 6 

𝐷′ = 𝐷 ∗ 𝑔(𝜆, 𝐴𝑈𝐶𝑚) 

 

To test this process, two datasets were used. First, a set of 

twenty-five HN VMAT radiotherapy cases were curated 

from our institution. These cases included a planning CT 

image, the clinical dose map from the treatment planning 

system, PTV contours of varying prescriptions, and OAR 

contours required to generate the high-quality dose 

predictions as described by Gronberg et al.11 To assess 

translatability of our approach, an additional fourteen 

gynecological (GYN) VMAT cases were curated from our 

institution. These cases included a planning CT image, the 

clinical dose map from the treatment planning system, a 

single PTV contour prescribed to 45Gy, and OAR contours 

required to generate the high-quality dose predictions as 

described by Gronberg et al.12 

 

Five HN OAR groupings were selected in this study (Table 

1). The generation parameters listed in Table 1 were 

selected based upon preliminary experimentation to provide 

realistic-appearing dose distributions. 

 

 

Group OARs AUCm FWHM/𝛽 

1 Esophagus 

Larynx 
1.1-1.7 0.15/4 

2 Brainstem 1.1-1.7 0.15/4 

3 Optic Nerves 

Lenses 
1.1-1.7 0.15/4 

4 Parotids 1.1-1.7 0.15/4 

5 Cochleae 1.1-1.7 0.15/4 

Table 1: Groups of HN OARs for which the dose was 

increased in this study, with the generation parameters. 

 

Changes to the plan dose was assessed as relative difference 

in structure mean dose Dmean between the edited plans and 

the predicted high-quality plans. For each OAR in Table 1, 
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the relative change was calculated as Δ𝐷𝑚𝑒𝑎𝑛,𝑂𝐴𝑅 =
𝐷𝑚𝑒𝑎𝑛,𝑂𝐴𝑅

′ −𝐷𝑚𝑒𝑎𝑛,𝑂𝐴𝑅

𝐷𝑚𝑒𝑎𝑛,𝑂𝐴𝑅
. A paired one-sided T-test was applied 

to assess significance in change to Dmean for each OAR, with 

significance taken at the p<0.01 level. 

 

An experienced dosimetrist also reviewed a subset of the 

dose distributions, all generated with AUCm=1.4, to assess 

clinical realism. To avoid bias, the dosimetrist was blinded 

to plan origin. A random mix of 10 clinical dose 

distributions and 10 suboptimal distributions was generated. 

The dosimetrist reviewed each dose distribution 

individually and answered if they thought the doses were 

(1) generated by a human with a treatment planning system, 

(2) generated by a deep learning dose prediction model, or 

(3) unable to determine or ambiguous. 

3 Results 

Dose was increased around the selected OARs in each 

group in a controllable way, as shown in Figure 2. This 

increase was statistically significant. Increasing kernel 

AUCm increased mean dose as shown in Figure 1, where the 

relatively small error bars indicate strong control of change 

in dose. Figures 1 and 3 also demonstrate the localization of 

changes; mean dose is increased most around the OARs of 

interest in each group. The smaller increase in dose to other 

OARs are appropriate for clinical realism; while not 

changed as substantially as for the OARs of interest, they 

still exhibit realistic dose increases. While Figures 1 & 3 

show a subset of groups and OARs for clarity, the general 

trend remains across all groups.  

 

 

Figure 1: Relative increase in mean dose for selected OAR 

groups as the maximum kernel AUC increases.  

The rate at which the dosimetrist was unable to determine if 

the dose distribution originated from a clinical treatment 

plan or a generated prediction was 80% for the suboptimal 

dose distributions, comparable to 70% for the clinical dose 

distributions. This indicates that the suboptimal dose 

distributions do not appear substantially different to plans 

that might be encountered in the clinic – that is, the 

generated plans are suboptimal but still clinically realistic. 

The GYN dose distributions were edited using the same 

parameters as in Table 1, but with three groups of OARS: 

Bladder, Rectum, and the Femoral Heads together. Dmean 

was again increased for each OAR with increasing AUCm 

(Table 2). This demonstrates the translatability of our 

approach across treatment sites. 

 

AUCm Bladder Rectum L. Femur 

Head 

R. Femur 

Head 

1.1 0.02 0.01 0.07 0.07 

1.2 0.05 0.03 0.13 0.14 

1.3 0.07 0.04 0.20 0.20 

1.4 0.09 0.06 0.26 0.27 

1.5 0.12 0.07 0.33 0.34 

1.6 0.14 0.09 0.39 0.40 

1.7 0.16 0.10 0.46 0.47 

Table 2: Relative increase in Dmean for the GYN cases. 

 

 

Figure 2: Comparison of the suboptimal dose distribution 

with the initial high-quality dose distribution. This example 

came from Group 1 where the larynx (magenta) and 

esophagus (only seen in the DVH)) were the OARs for 

which the changes are focused. Blue and yellow regions: 

low- and mid-risk PTV, respectively.  
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Figure 3: Distribution of relative increase in mean dose for 

selected OAR groups, with a single kernel AUCm of 1.4. 

Green boxes indicate the selected OARs for each group. 

4 Discussion 

In this study, a tool for generating suboptimal but clinically 

realistic dose distributions was successfully developed. To 

our knowledge, this is the first such approach and opens the 

door to a range of applications for medical education and 

training.   

 

The next step of this project will be to integrate this tool into 

the treatment planning system. Using scripting, an 

interactive model will be designed that presents trainees 

with different scenarios and asks them to identify where the 

treatment plan quality can be improved. 

 

5 Conclusion 

In this work, we develop a tool for generating artificial dose 

distributions that are clinically realistic. These dose 

distributions are suboptimal in predictable and controllable 

locations. 
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