

# FOUNDATION MODELS FOR IMAGING & RT APPLICATIONS

Lei Xing, PhD

Jacob Haimson & Sarah S. Donaldson Professor & Director of Medical Physics Division

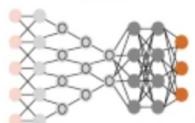
Departments of Radiation Oncology & Electrical Engineering (by courtesy),  
ICME & Molecular Imaging Program (MIPS)  
Stanford University, Stanford, California

Stanford University

Department of Radiation Oncology  
School of Medicine



# ARTIFICIAL INTELLIGENCE IN 2024



2014 - Deep learning



2021-AlphaFold



2023-Foundation models



Sam Altman  @sama · Dec 21  
it's been a crazy year.

i'm grateful that we put a tool out in the world that people really love and get so much benefit from.

more than that, i am glad that 2023 was the year the world started taking AI seriously.

504

1K

14K

768K

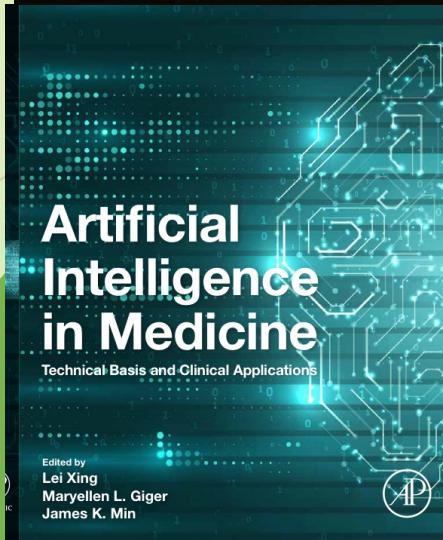
↑



ARTIFICIAL INTELLIGENCE IN RADIATION ONCOLOGY AND BIOMEDICAL PHYSICS

Edited by  
Gilmer Valdes and Lei Xing

CRC  
Taylor & Francis Group



# AI FOUNDATION MODELS

## • Definition:

Foundation models are large-scale machine learning models trained on vast amounts of data. They are designed to be adaptable to a wide range of tasks.

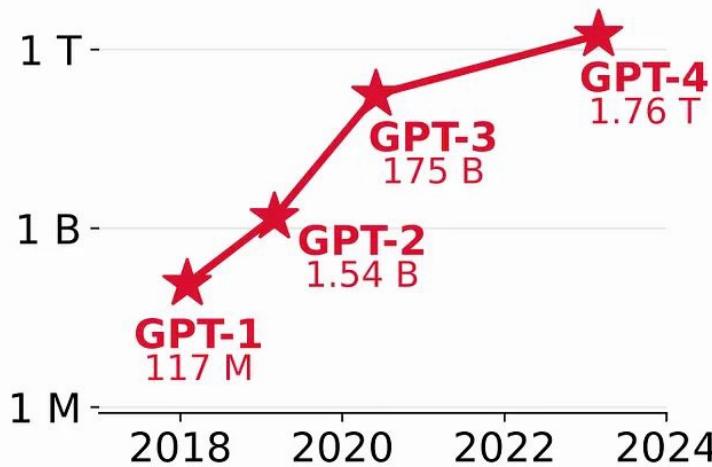
## Characteristics:

- **Large scale:** large number of parameters & datasets
- **Generalization:** capable of performing various task-specific training
- **Adaptability:** can be fine-tuned for specific applications
- **Self-supervised**

LLMs

# FOUNDATION MODELS

## Parameters Count



Segment Anything Model

## A visual-language foundation model for computational pathology

### Training Data Size

arXiv > hep-ph > arXiv:2403.05618

High Energy Physics - Phenomenology

[Submitted on 8 Mar 2024]

#### OmniJet- $\alpha$ : The first cross-task foundation model for particle physics

Joschka Birk, Anna Hallin, Gregor Kasieczka

Foundation models are multi-dataset and multi-task machine learning methods that once pre-trained can be fine-tuned for a large variety of downstream applications. The successful development of such general-purpose models for physics data would be a major breakthrough as they could improve the achievable physics performance while at the same time drastically reduce the required amount of training time and data. We report significant progress on this challenge on several fronts. First, a comprehensive set of evaluation methods is introduced to judge the quality of an encoding from physics data into a representation suitable for the autoregressive generation of particle jets with transformer architectures (the common backbone of foundation models). These measures motivate the choice of a higher-fidelity tokenization compared to previous works. Finally, we demonstrate transfer learning between an unsupervised problem (jet generation) and a classic supervised task (jet tagging) with our new OmniJet- $\alpha$  model. This is the first successful transfer between two different and actively studied classes of tasks and constitutes a major step in the building of foundation models for particle physics.

Subjects: High Energy Physics - Phenomenology (hep-ph); Machine Learning (cs.LG); High Energy Physics - Experiment (hep-ex); Data Analysis, Statistics and Probability (physics.data-an)

Cite as: arXiv:2403.05618 [hep-ph]  
(or arXiv:2403.05618v1 [hep-ph] for this version)  
<https://doi.org/10.48550/arXiv.2403.05618>

## Medical Vision Generalist: Unifying Medical Imaging Tasks in Context

Sucheng Ren<sup>1</sup> Xiaoke Huang<sup>2</sup> Xianhang Li<sup>2</sup> Junfei Xiao<sup>1</sup> Jieru Mei<sup>1</sup> Zeyu Wang<sup>2</sup>  
Alan Yuille<sup>1</sup> Yuyin Zhou<sup>2</sup>

<sup>1</sup>Johns Hopkins University

<sup>2</sup>UC Santa Cruz

### Abstract

# GENEFORMER & RSC-GPT

## A New AI Tool Predicts Gene Expression in a Single Cell

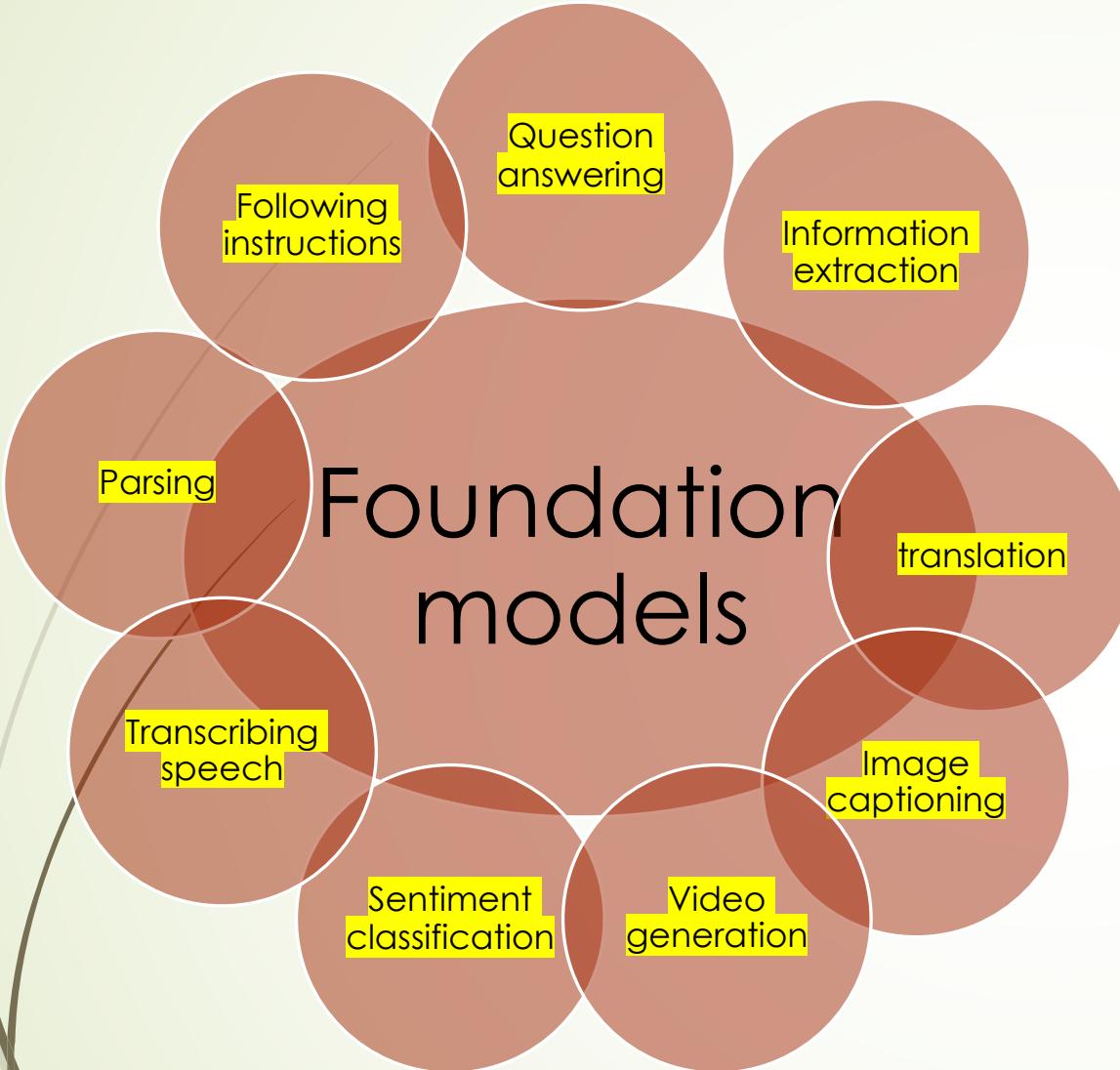
An artificial intelligence tool, scGPT, can identify cell types, predict the effects of disrupting genes, and pinpoint which genes interact with each other.



Carissa Wong, PhD

Aug 21, 2023 | 4 min read

# Foundation models



- **Fine-tuning**

- **prompting**

- **In-context learning**

In-context Vectors: Making In Context Learning More Effective and Controllable Through Latent Space Steering

Sheng Liu<sup>†</sup>, Lei Xing<sup>†</sup>, James Zou<sup>†</sup>

<sup>†</sup> Stanford University

{shengl, lei, jamesz}@stanford.edu

Warning: This paper includes examples and model-generated content that may be deemed offensive.

## Abstract

Large language models (LLMs) demonstrate emergent in-context learning capabilities, where they adapt to new tasks based on example demonstrations. However, in-context learning has seen limited effectiveness in many settings, is difficult to quantitatively control and takes up context window space. To overcome these limitations, we propose an alternative approach that recasts in-context learning as *in-context vectors* (ICV). Using ICV has two steps. We first use a forward pass on demonstration examples to create the in-context vector from the latent embedding of the LLM. This vector captures essential information about the intended task. On a new query, instead of adding demonstrations to the prompt, we shift the latent states of the LLM using the ICV. The ICV approach has several benefits: 1) it enables the LLM to more effectively follow the demonstration examples; 2) it's easy to control by adjusting the magnitude of the

# AI Foundation Models

- **Versatility:** One model can be adapted for multiple tasks (e.g., language translation, summarization, question answering).
- **Efficiency:** Reduces the need for developing and training models from scratch for different tasks.

**The deployment of FMs need to be cautious - more focused research is necessary to realize the potential of FMs.**

## Assessing the limits of zero-shot foundation models in single-cell biology

**Kasia Z. Kedzierska<sup>1</sup>\*, Lorin Crawford<sup>2</sup>, Ava P. Amini<sup>2</sup>, Alex X. Lu<sup>2</sup>**

<sup>1</sup>University of Oxford, Oxford, UK; <sup>2</sup>Microsoft Research, Cambridge, MA, USA  
kasia@well.ox.ac.uk, {lcrawford, ava.amini, lualex}@microsoft.com

### Abstract

The advent and success of foundation models such as GPT has sparked growing interest in their application to single-cell biology. Models like Geneformer and scGPT have emerged with the promise of serving as versatile tools for this specialized field. However, the efficacy of these models, particularly in zero-shot settings where models are not fine-tuned but used without any further training, remains an open question, especially as practical constraints require useful models to function in settings that preclude fine-tuning (e.g., discovery settings where labels are not fully known). This paper presents a rigorous evaluation of the zero-shot performance of these proposed single-cell foundation models. We assess their utility in tasks such as cell type clustering and batch effect correction, and evaluate the generality of their pretraining objectives. Our results indicate that both Geneformer and scGPT exhibit limited reliability in zero-shot settings and often underperform compared to simpler methods. These findings serve as a cautionary note for the deployment of proposed single-cell foundation models and highlight the need for more focused research to realize their potential.<sup>2</sup>

# Revealing hidden patterns in deep neural network feature space continuum via manifold learning

Received: 17 May 2023

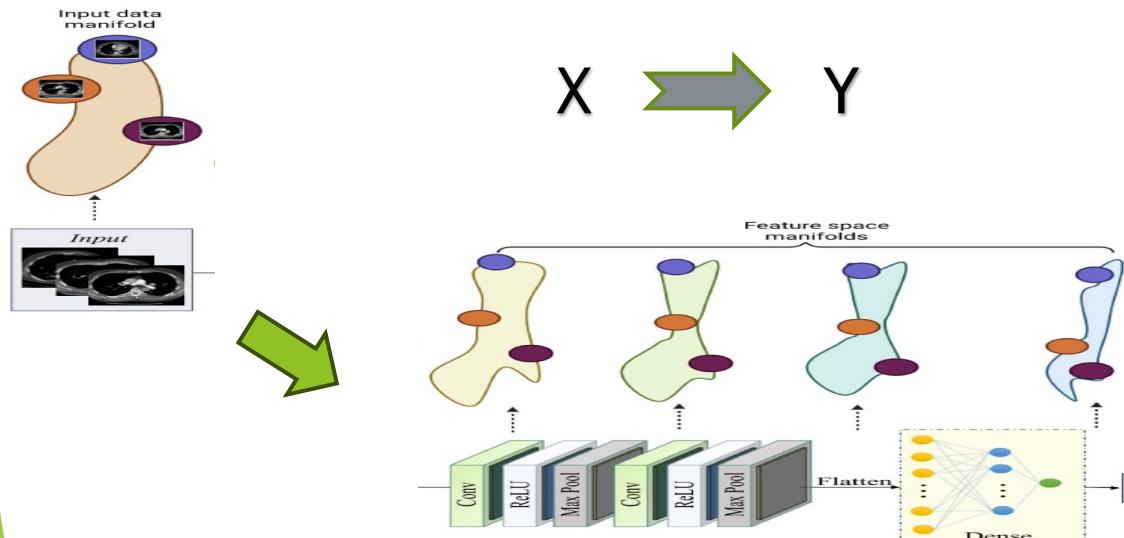
Accepted: 24 November 2023

Published online: 21 December 2023

 Check for updates

Md Tauhidul Islam  <sup>1,4</sup>, Zixia Zhou  <sup>1,4</sup>, Hongyi Ren<sup>1</sup>, Masoud Badiei Khuzani<sup>1</sup>, Daniel Kapp<sup>1</sup>, James Zou  <sup>2</sup>, Lu Tian<sup>2</sup>, Joseph C. Liao  <sup>3</sup>  & Lei Xing  <sup>1</sup> 

Deep neural networks (DNNs) extract thousands to millions of task-specific features during model training for inference and decision-making. While visualizing these features is critical for comprehending the learning process and improving the performance of the DNNs, existing visualization techniques work only for classification tasks. For regressions, the feature points lie on a high dimensional continuum having an inherently complex shape, making a meaningful visualization of the features intractable. Given that the majority of deep learning applications are regression-oriented, developing a conceptual



## ARTICLES

<https://doi.org/10.1038/s41551-020-00635-3>

nature  
biomedical engineering

 Check for updates

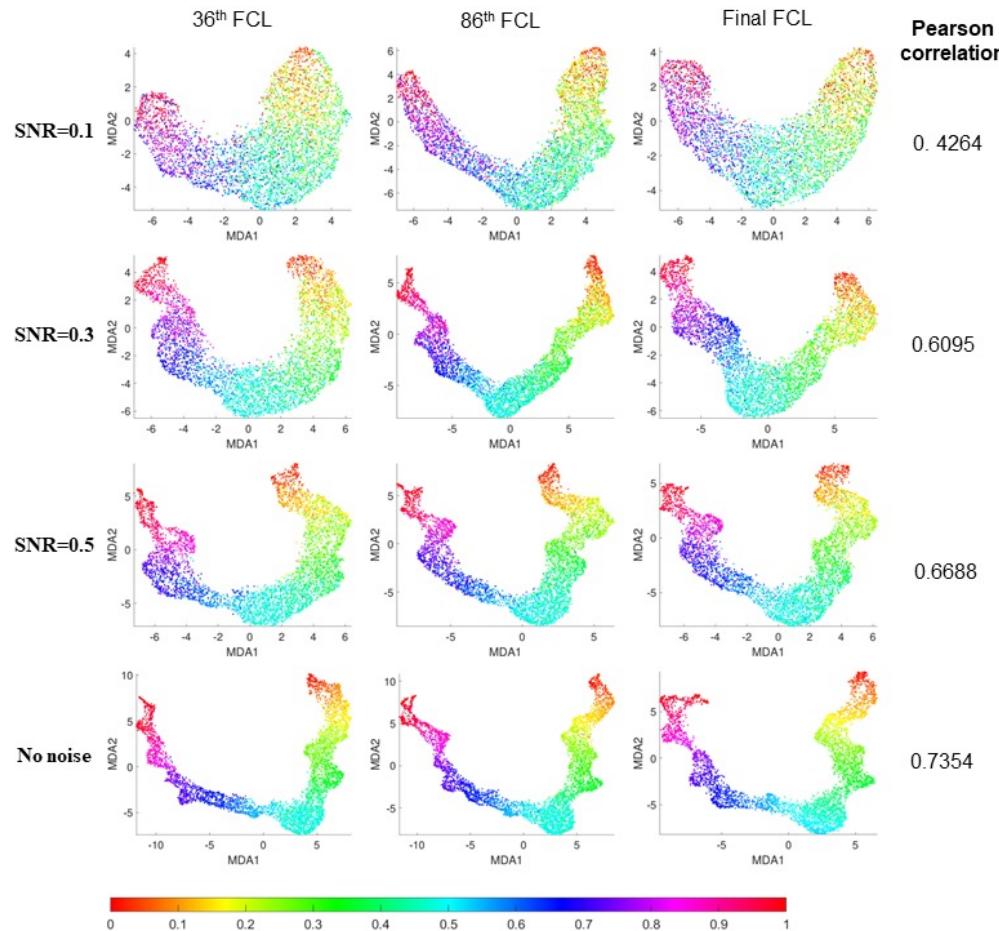
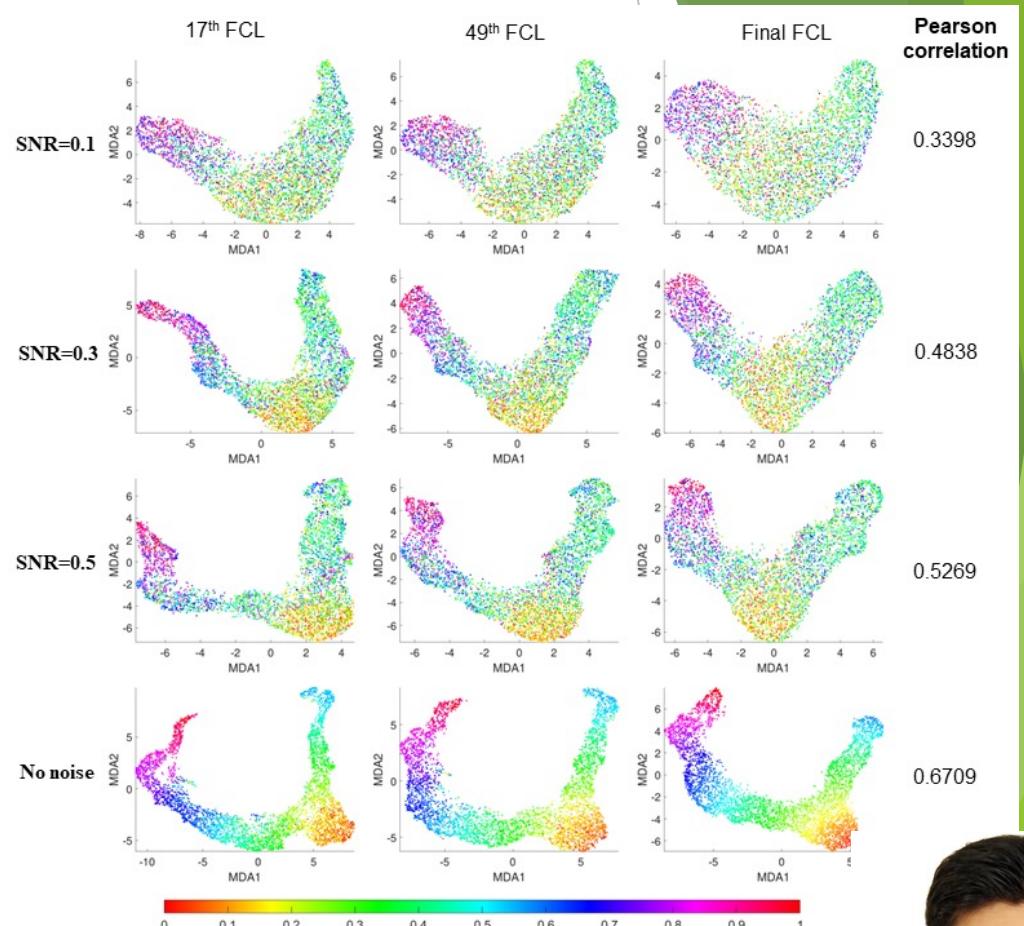
# A data-driven dimensionality-reduction algorithm for the exploration of patterns in biomedical data

Md Tauhidul Islam  and Lei Xing  

Dimensionality reduction is widely used in the visualization, compression, exploration and classification of data. Yet a generally applicable solution remains unavailable. Here, we report an accurate and broadly applicable data-driven algorithm for dimensionality reduction. The algorithm, which we named 'feature-augmented embedding machine' (FEM), first learns the structure of the data and the inherent characteristics of the data components (such as central tendency and dispersion), denoises the data, increases the separation of the components, and then projects the data onto a lower number of dimensions. We show that the technique is effective at revealing the underlying dominant trends in datasets of protein expression and single-cell RNA sequencing, computed tomography, electroencephalography and wearable physiological sensors.

NATURE BIOMEDICAL ENGINEERING | VOL 5 | JUNE 2021 | 624-635 | [www.nature.com/natbiomedeng](http://www.nature.com/natbiomedeng)

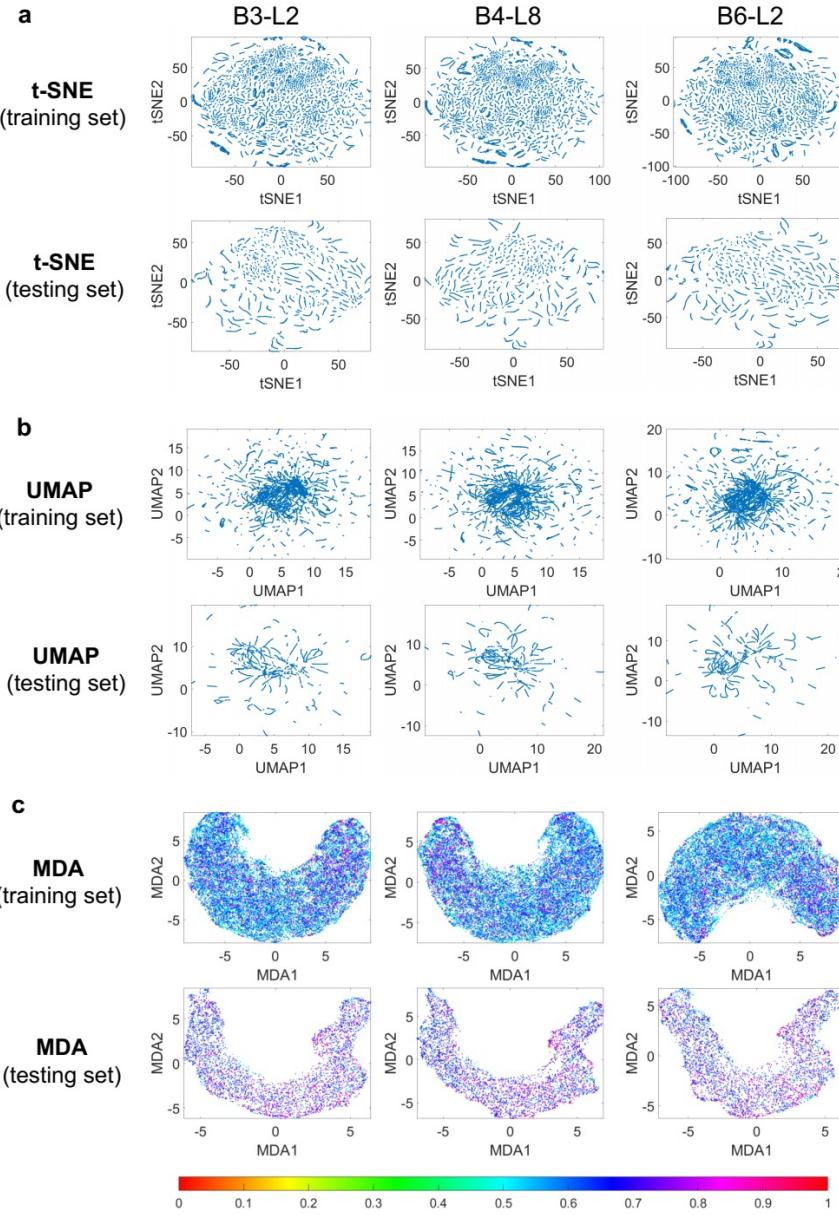




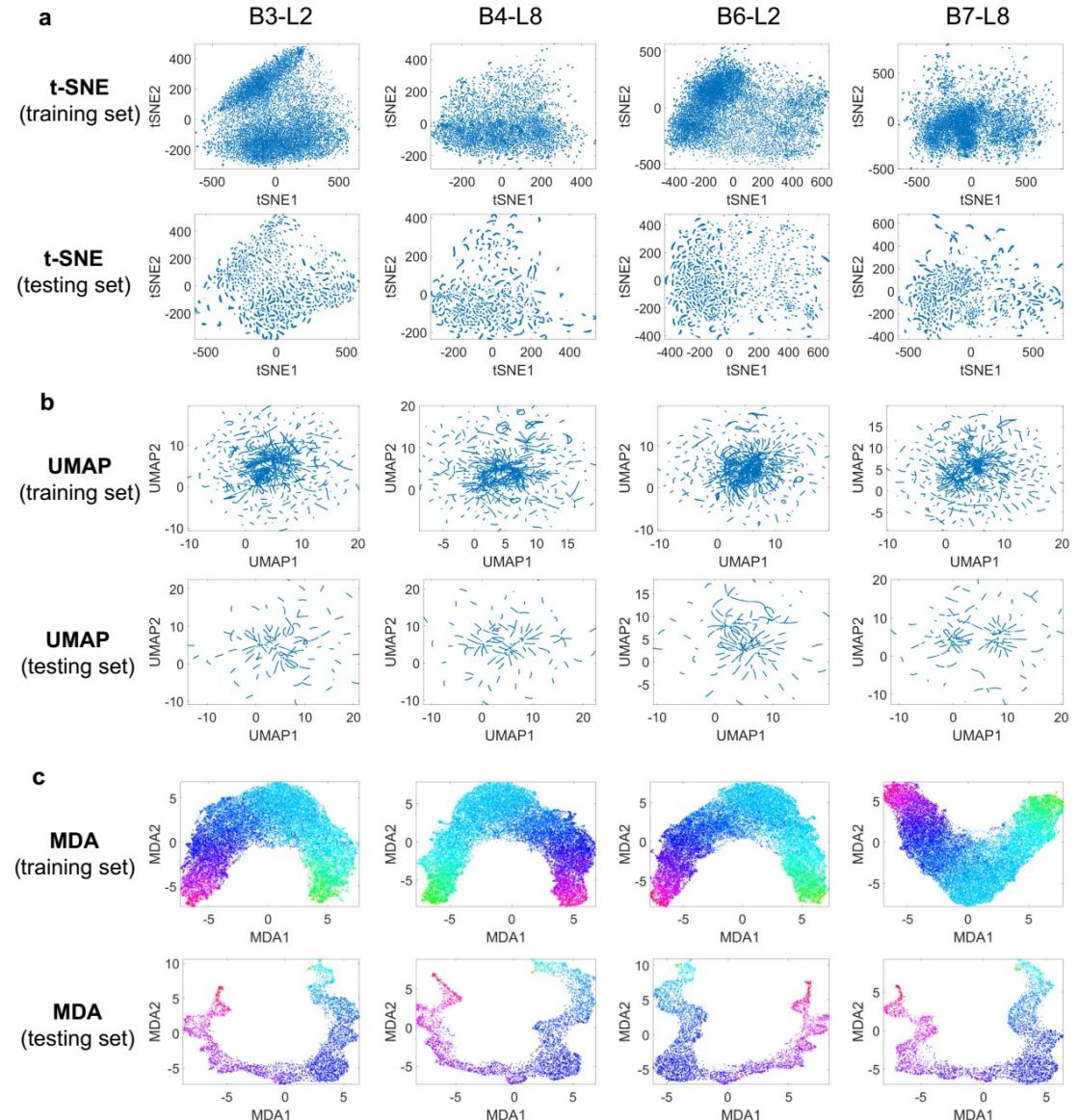
MDA visualization of GPT-2 and BERT finetuning features at 3 different layers at different SNRs. Red to violet color denotes the survival days for 10,000 days. Colorbar denotes the normalized survival days.



# Before training



# After training



Brain tumor segmentation in MRI- Dense-UNet

# Data curation via joint example selection further accelerates multimodal learning

Talfan Evans, Nikhil Parthasarathy, Hamza Merzic, Olivier J. Henaff

Data curation is an essential component of large-scale pretraining. In this work, we demonstrate that jointly selecting batches of data is more effective for learning than selecting examples independently. Multimodal contrastive objectives expose the dependencies between data and thus naturally yield criteria for measuring the joint learnability of a batch. We derive a simple and tractable algorithm for selecting such batches, which significantly accelerate training beyond individually-prioritized data points. As performance improves by selecting from larger super-batches, we also leverage recent advances in model approximation to reduce the associated computational overhead. As a result, our approach--multimodal contrastive learning with joint example selection (JEST)--surpasses state-of-the-art models with up to  $13\times$  fewer iterations and  $10\times$  less computation. Essential to the performance of JEST is the ability to steer the data selection process towards the distribution of smaller, well-curated datasets via pretrained reference models, exposing the level of data curation as a new dimension for neural scaling laws.

Comments: Main text: 9 pages, 5 figures, 3 tables, 1 algorithm. Appendix: 7 pages, 5 figures, 1 table, 2. algorithm

Subjects: **Machine Learning (cs.LG)**; Artificial Intelligence (cs.AI)

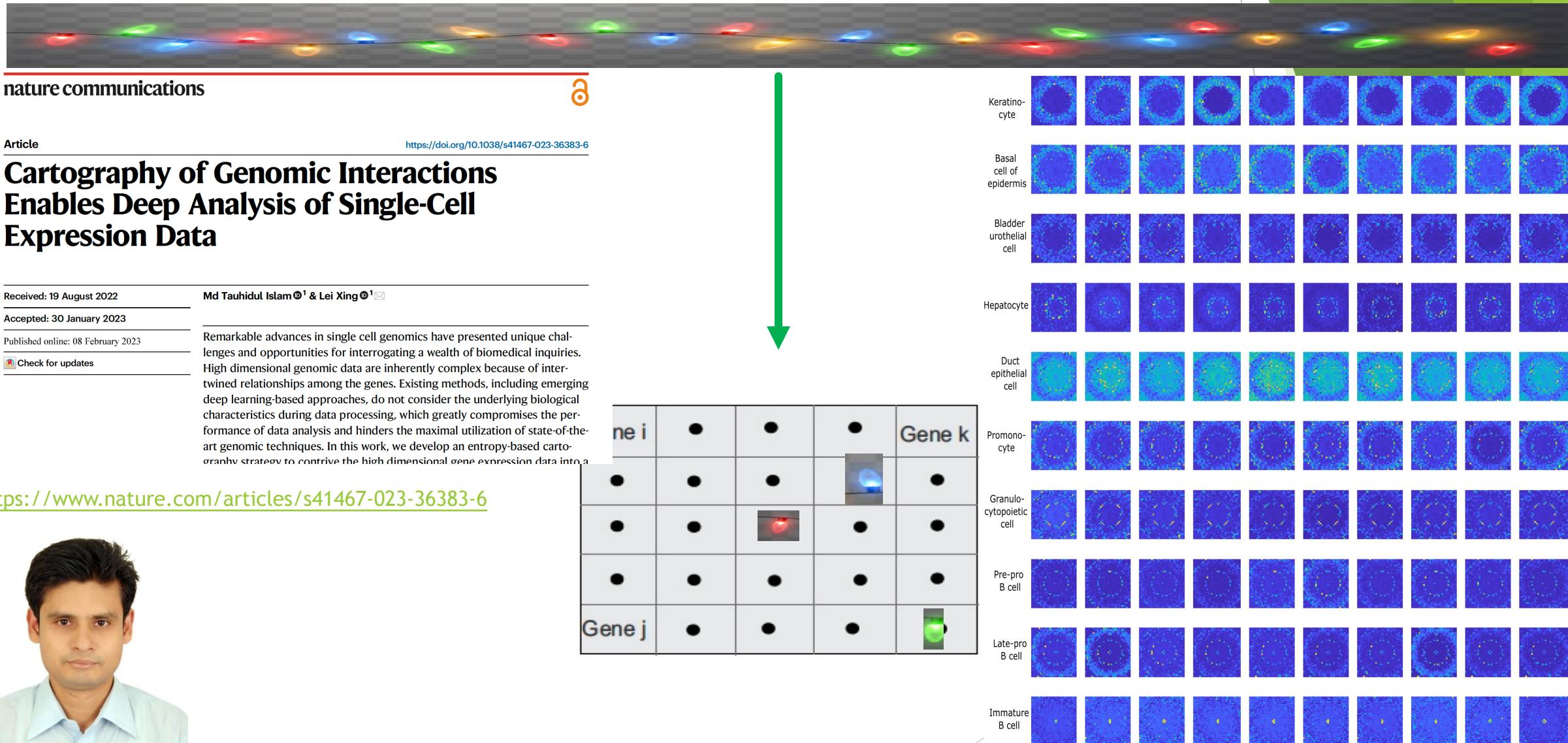
Cite as: [arXiv:2406.17711 \[cs.LG\]](https://arxiv.org/abs/2406.17711)

(or [arXiv:2406.17711v1 \[cs.LG\]](https://arxiv.org/abs/2406.17711v1) for this version)

<https://doi.org/10.48550/arXiv.2406.17711> 

# AI FOR OMICS/RADIOIMICS DATA PROCESSING

www.AnalyXus.com

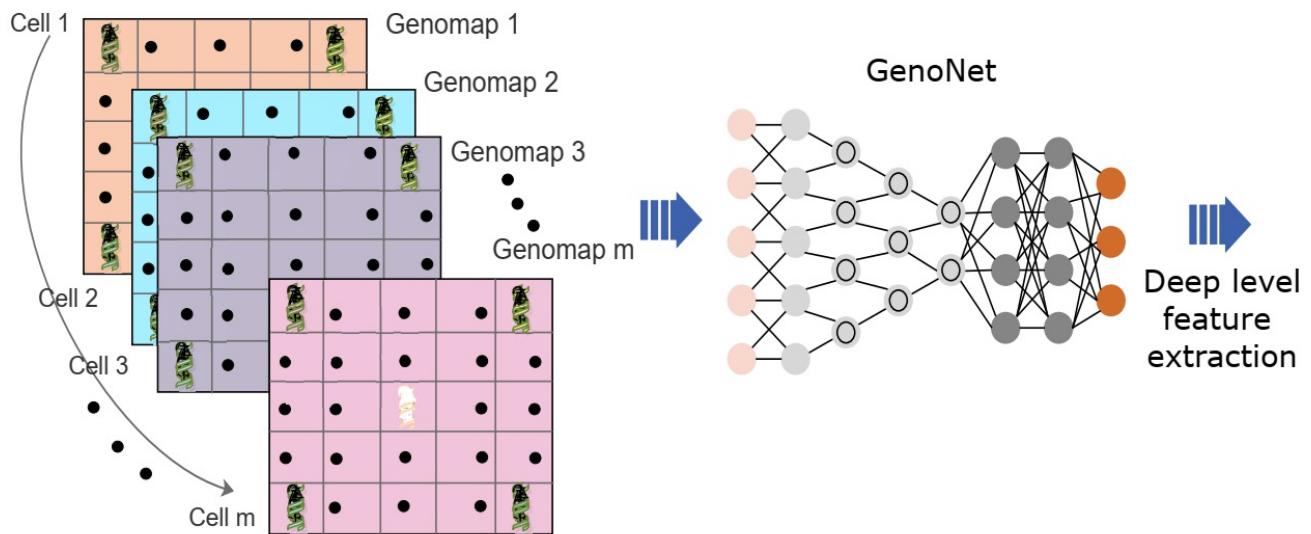


# Deep analysis of RNA-seq data

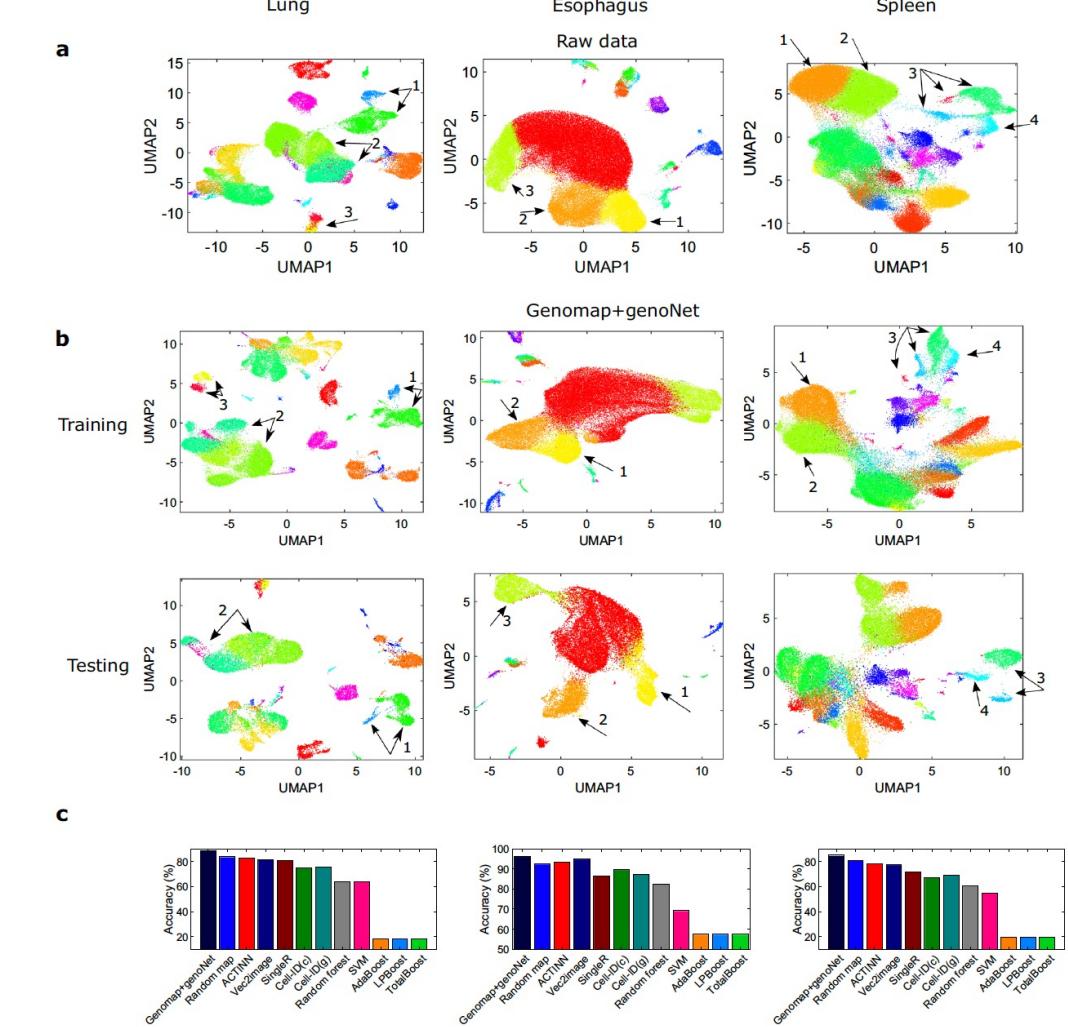
Article

<https://doi.org/10.1038/s41467-023-36383-6>

**b**



[www.AnalyXus.com](http://www.AnalyXus.com)



**Fig. 4 | Visualization of ischaemic sensitivity dataset (left-lung, middle-esophagus, right-spleen).** a, UMAP visualizations of raw data. b, UMAP visualizations of the genomap features at the fully connected layer of the genoNet. Major improvements in cluster separation are indicated by arrows. Color legends of the

data classes are added in Supplementary Fig. S22. c Classification accuracy of different techniques including genomap+genoNet. Here, Cell-ID(c) and Cell-ID(g) denote Cell-ID technique with cell-to-cell and cell-to-group matching formulation. Source data are provided as a Source Data file.

# How can FMs help AI Radiation Therapy?

Introduce additional information to enhance the solution.

- ▶ Tumor volume delineation
- ▶ Treatment planning
- ▶ Clinical decision making
- ▶ .....

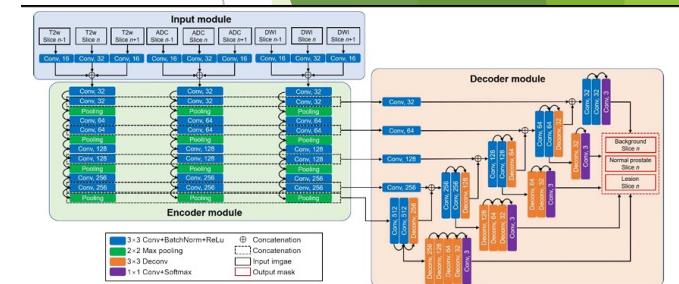
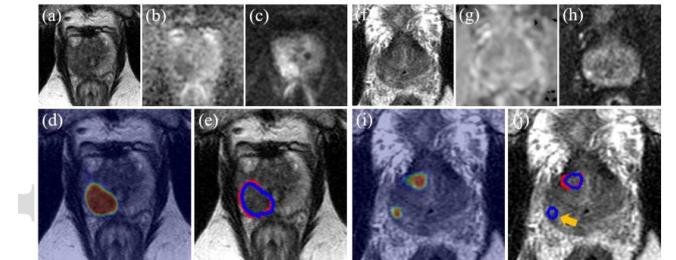


Figure 1. Architecture of the proposed MB-UNet.



> *Med Phys.* 2020 Dec;47(12):6421-6429. doi: 10.1002/mp.14517. Epub 2020 Oct 24.

**Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet**

Yizheng Chen <sup>1</sup>, Lei Xing <sup>1</sup>, Lequan Yu <sup>1</sup>, Hilary P Bagshaw <sup>1</sup>, Mark K Bulyounouski <sup>1</sup>, Bin Han <sup>1</sup>

Affiliations + expand

PMID: 33012016 DOI: 10.1002/mp.14517



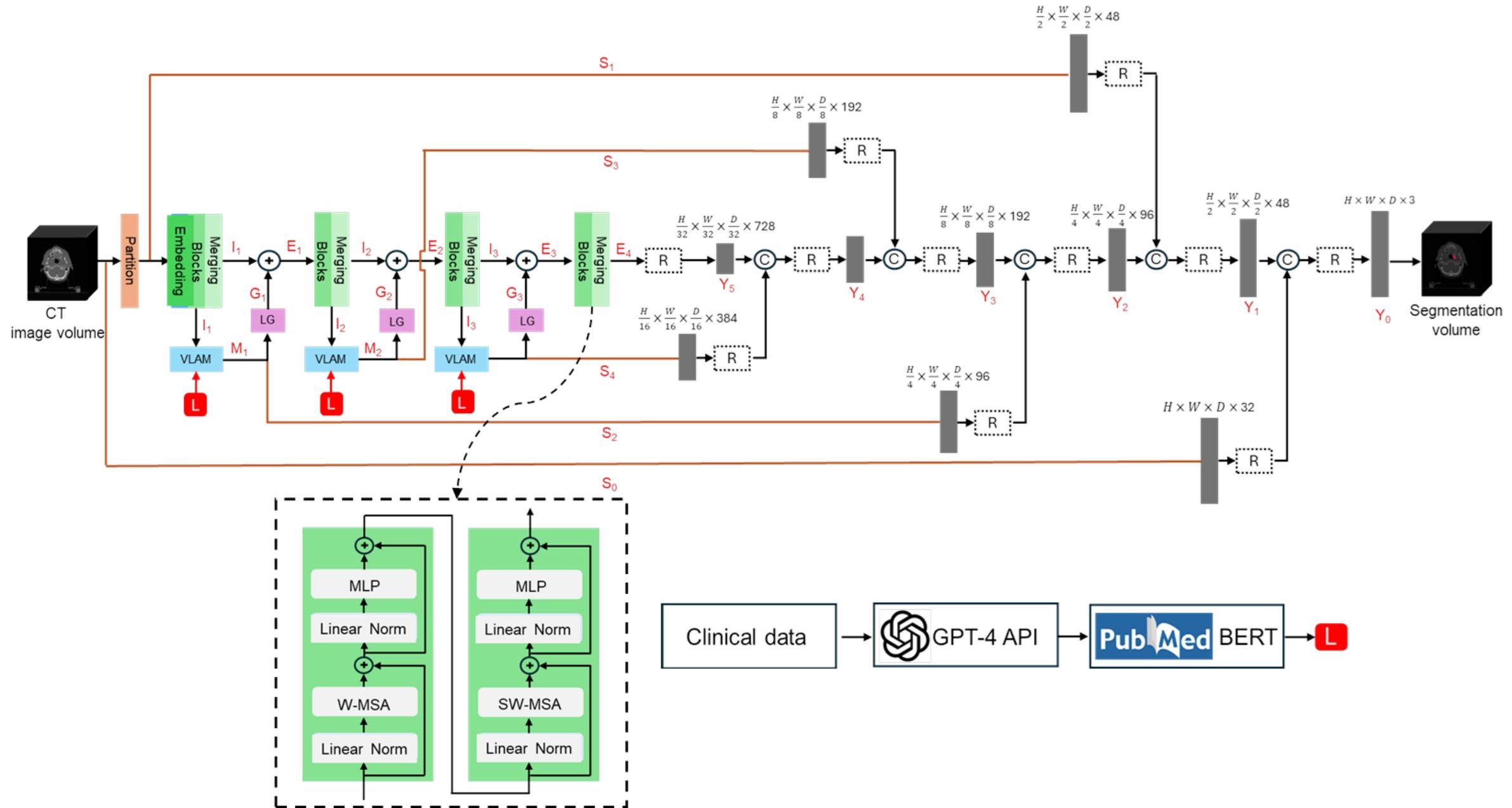
## Multimodal Learning-Based Automatic Delineation of Treatment Target Volume in Radiation Therapy Using Large Language Models

Praveenbalaji Rajendran, Yong Yang, Thomas R. Niedermayr, Michael Gensheimer, Beth Beadle, Quynh-Thu Le, Lei Xing, and Xianjin Dai\*

**Abstract**— Radiation therapy (RT) is one of the most effective treatments for cancer, and its success relies on the accurate delineation of targets. However, target delineation is a comprehensive medical decision that currently relies purely on manual processes by human experts. Manual delineation is time-consuming, laborious, and subject to interobserver variations. Although the advancements in artificial intelligence (AI) techniques have significantly enhanced the auto-contouring of normal tissues, accurate delineation of RT target volumes remains

However, manual contouring of target volume is a complex, laborious process, subject to intra- and inter-observer variations [5]. Moreover, studies have demonstrated that a fair amount of the manually delineated target volumes are subjected to changes during the peer review process [6]–[8]. Over the last decade, deep learning (DL) has achieved significant progress in medical image segmentation tasks. Convolutional neural network (CNN) has demonstrated significant achievements in medical image segmentation [9]–[16]. Among CNNs, UNet

# Radformer



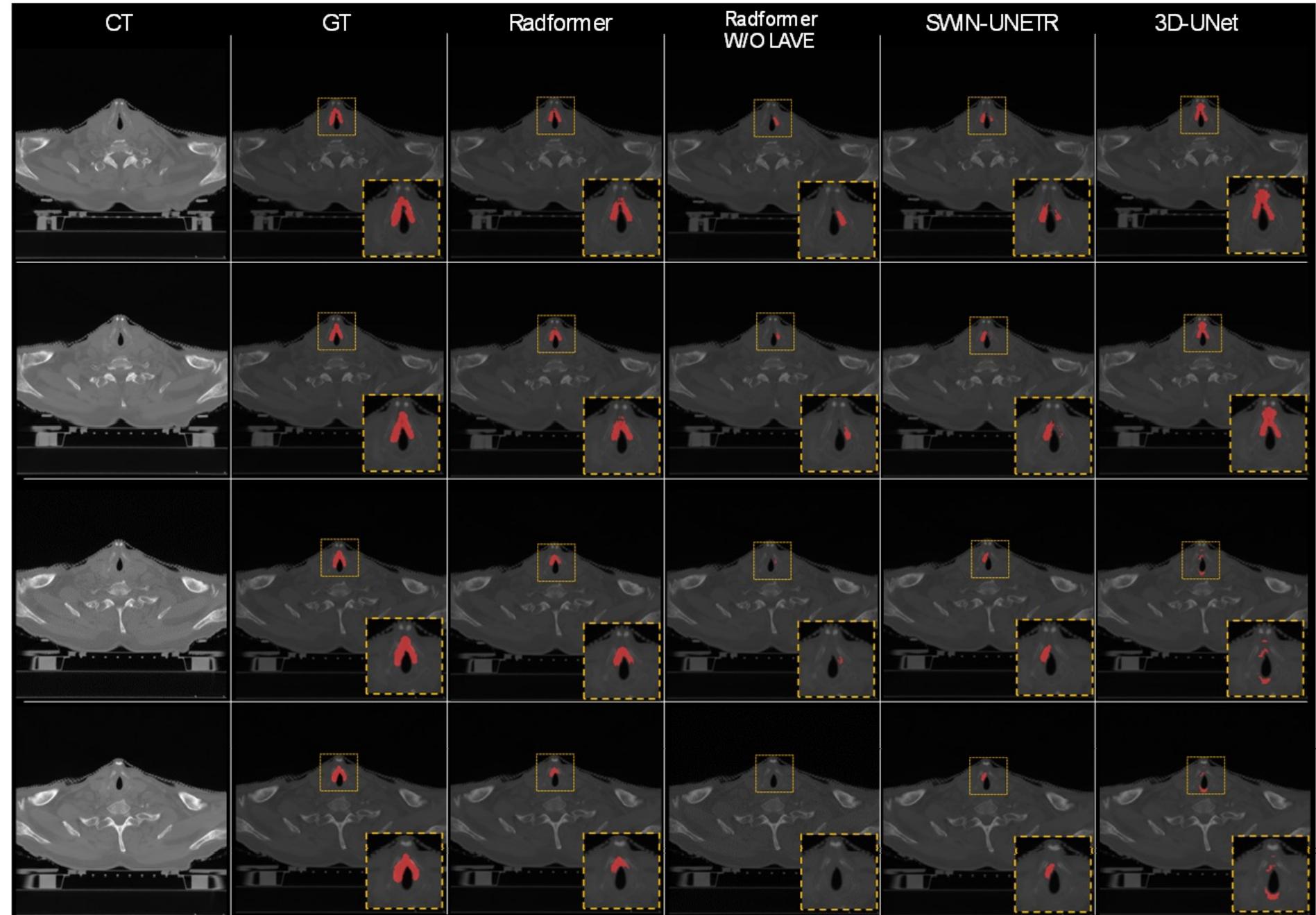


Fig. 4. Illustrative example of the GTV segmentation for a patient with early-stage laryngeal cancer

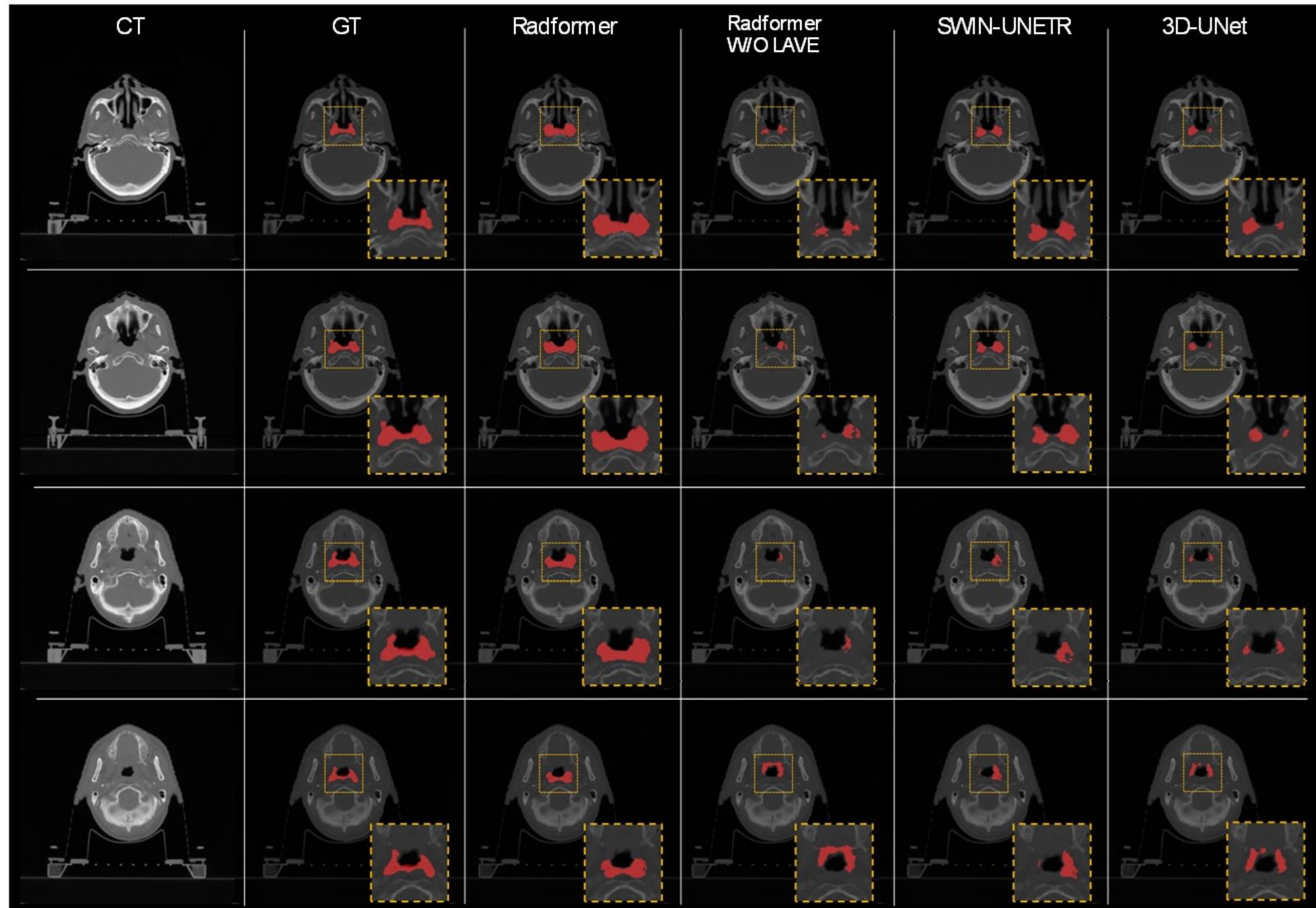


Fig. 5. Illustrative example of the GTV segmentation for a patient stage III nasopharyngeal cancer.

# Automated radiotherapy treatment planning guided by GPT-4Vision

Sheng Liu<sup>1,2\*</sup>, Oscar Pastor-Serrano<sup>1\*</sup>, Yizheng Chen<sup>1</sup>, Matthew Gopaulchan<sup>1</sup>, Weixing Liang<sup>3</sup>, Mark Buuyounouski<sup>1</sup>, Erqi Pollom<sup>1</sup>, Quynh-Thu Le<sup>1</sup>, Michael Gensheimer<sup>1</sup>, Peng Dong<sup>1</sup>, Yong Yang<sup>1</sup>, James Zou<sup>2,3†</sup>, and Lei Xing<sup>1†</sup>

<sup>1</sup>Department of Radiation Oncology, Stanford University, Stanford, CA, USA

<sup>2</sup>Department of Biomedical Data Science, Stanford University, Stanford, CA, USA

<sup>3</sup>Department of Computer Science, Stanford University, Stanford, CA, USA

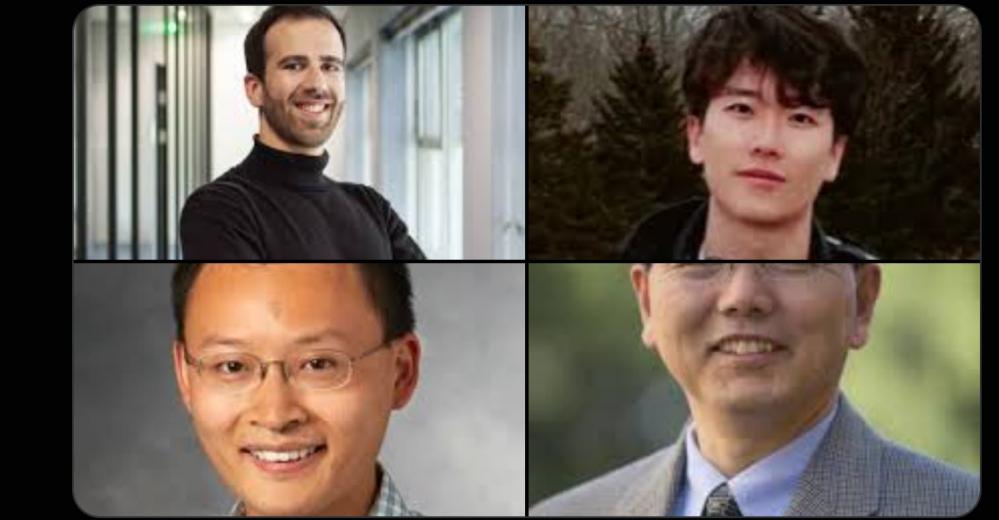
## Abstract

Radiotherapy treatment planning is a time-consuming and potentially subjective process that requires the iterative adjustment of model parameters to balance multiple conflicting objectives. Recent advancements in frontier AI models offer promising avenues for addressing the challenges in planning and clinical decision-making. This study introduces GPT-RadPlan, an automated treatment planning framework that integrates radiation oncology knowledge with the reasoning capabilities of large multimodal models, such as GPT-4Vision (GPT-4V) from OpenAI. Via in-context learning, we incorporate clinical protocols for various disease sites to enable GPT-4V to acquire treatment planning domain knowledge. The resulting GPT-RadPlan agent is integrated into our in-house inverse treatment planning system through an API. For a given patient, GPT-RadPlan acts as both plan evaluator and planner, first assessing dose distributions and dose-volume histograms (DVHs), and then providing “textual feedback” on how to improve the plan. In this manner, the agent iteratively refines the plan by adjusting planning parameters, such as weights and objective doses, based on its suggestions. The efficacy of the automated planning system is showcased across multiple prostate and head & neck cancer cases, where we compared GPT-RadPlan results to clinical plans produced by human experts. In all cases, GPT-RadPlan either outperformed or matched the clinical plans, demonstrating superior target coverage and organ-at-risk sparing. Consistently satisfying the dosimetric objectives in the clinical protocol, GPT-RadPlan represents the first multimodal large language model agent that mimics the behaviors of human planners in radiation oncology clinics, achieving promising results in automating the treatment planning process without the need for additional training.



Stanford Medical Physics @SUMedPhysics · Jun 24

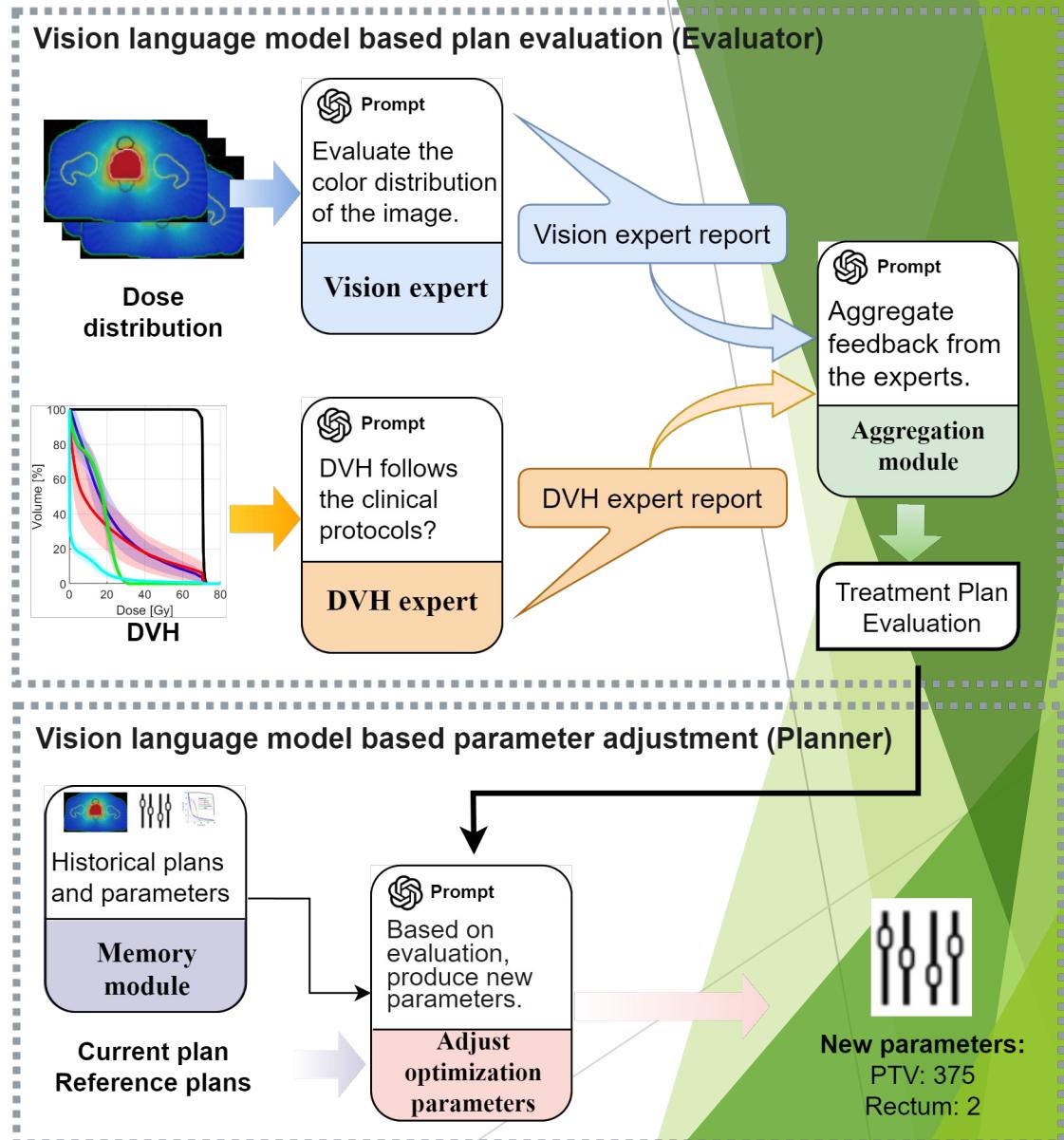
AI Foundation Model (FM) is coming to medical physics! We are pleased that the work to use FM for automated RT planning is selected as one of "the Best in Physics" at the upcoming AAPM annual meeting. Congratulations to Oscar, Sheng, and all co-authors! [aapm.confex.com/aapm/2024am/me...](http://aapm.confex.com/aapm/2024am/me...)



Liu S, Pastor-Serrano O, ...., arXiv preprint  
arXiv:2406.15609, 2024

# GPT-RadPlan

- ▶ Based on GPT4-Vision
- ▶ Evaluation module:
  - DVH Expert - compares metrics with protocol/intent
  - Image expert - evaluates dose distribution and presence of hot/cold spots
  - Aggregation module - improvement suggestions
- ▶ Planner module: suggest new parameters based on
  - Stored information from previous iterations
  - The current plan
  - 3 reference approved plans from the same disease site



# DVH comparison

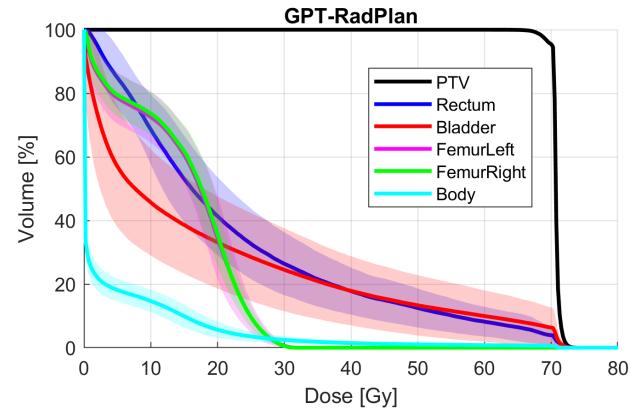
GPT-RadPlan consistently meets the protocols  
Overall, 15% reduction in prostate mean dose

## Prostate:

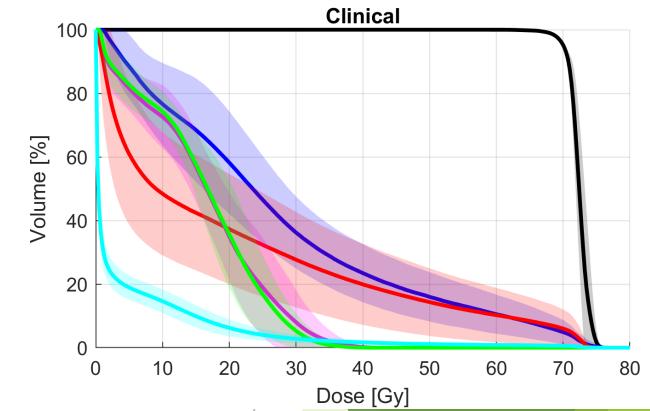
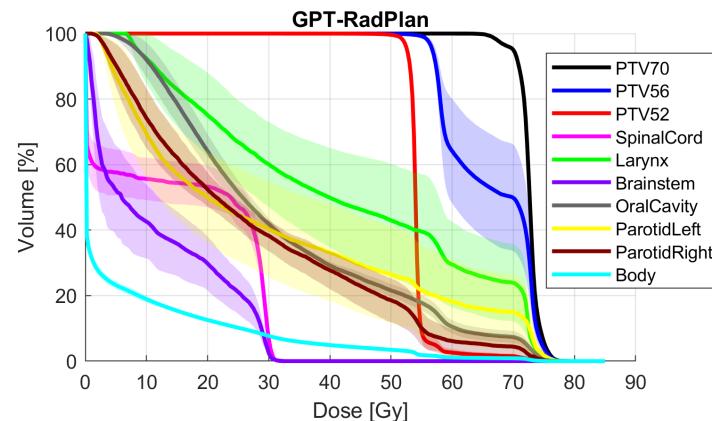
- Better PTV coverage (HI 1.96 vs 5.43, CI 0.92 vs 0.88)
- Better rectum sparing
- Slightly better bladder sparing
- Similar femoral head sparing, avoids higher doses

## Head and neck:

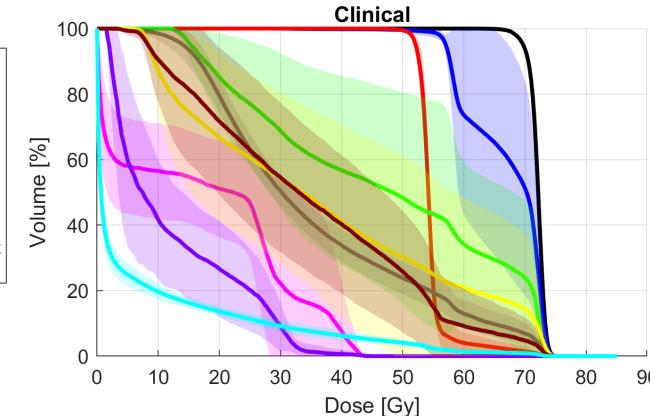
- Similar PTV coverage, more conformal (CI 0.96 vs 0.84)
- Better larynx, oral cavity, parotid sparing
- Similar brainstem and spinal cord sparing



Prostate cases

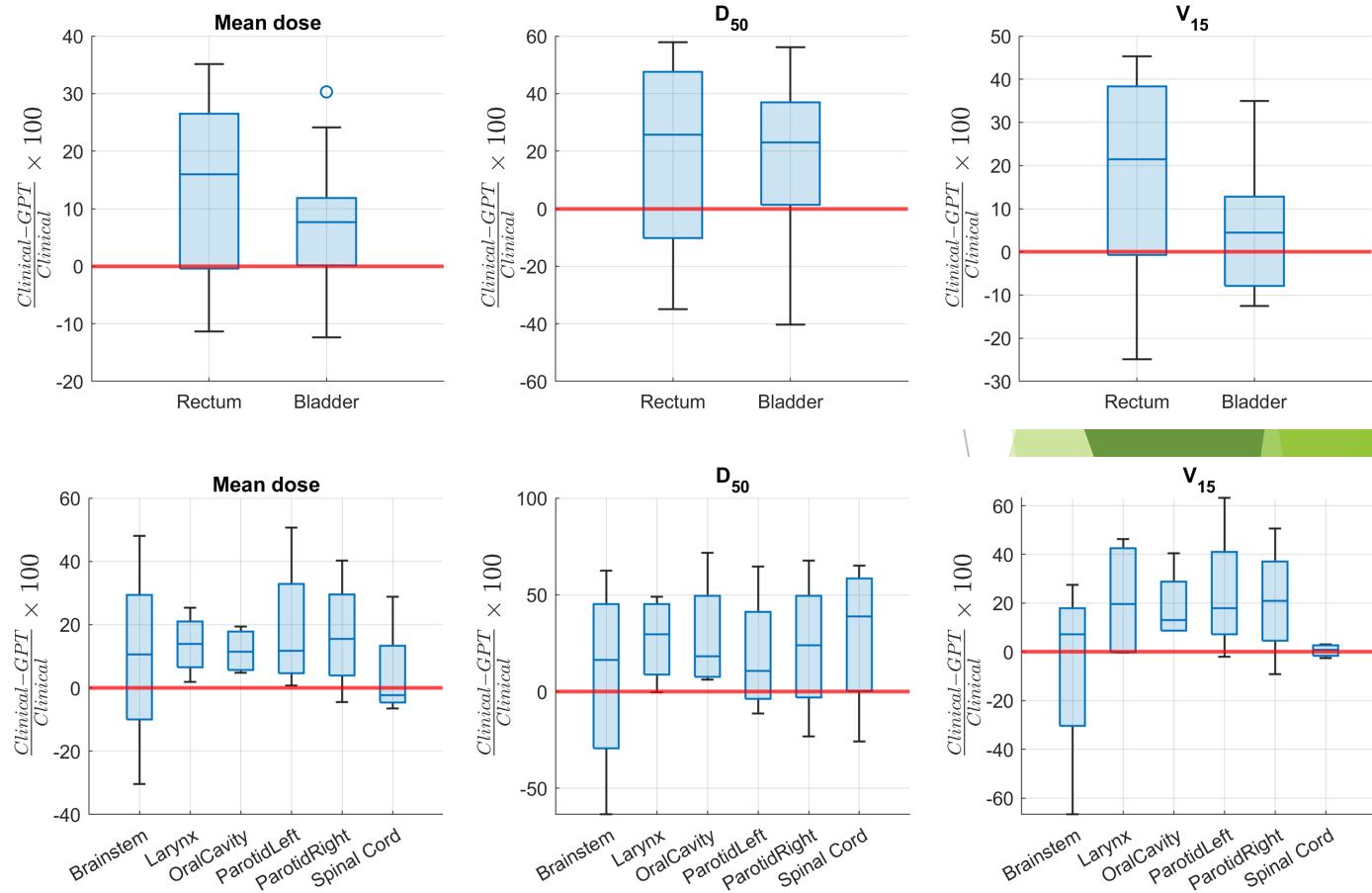


Head-and-neck cases



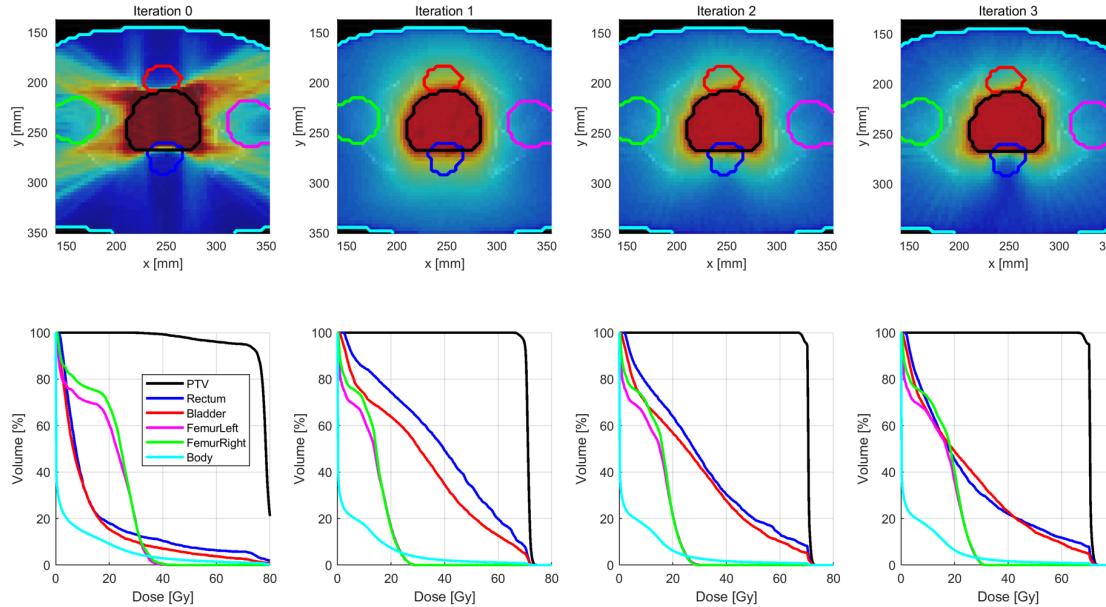
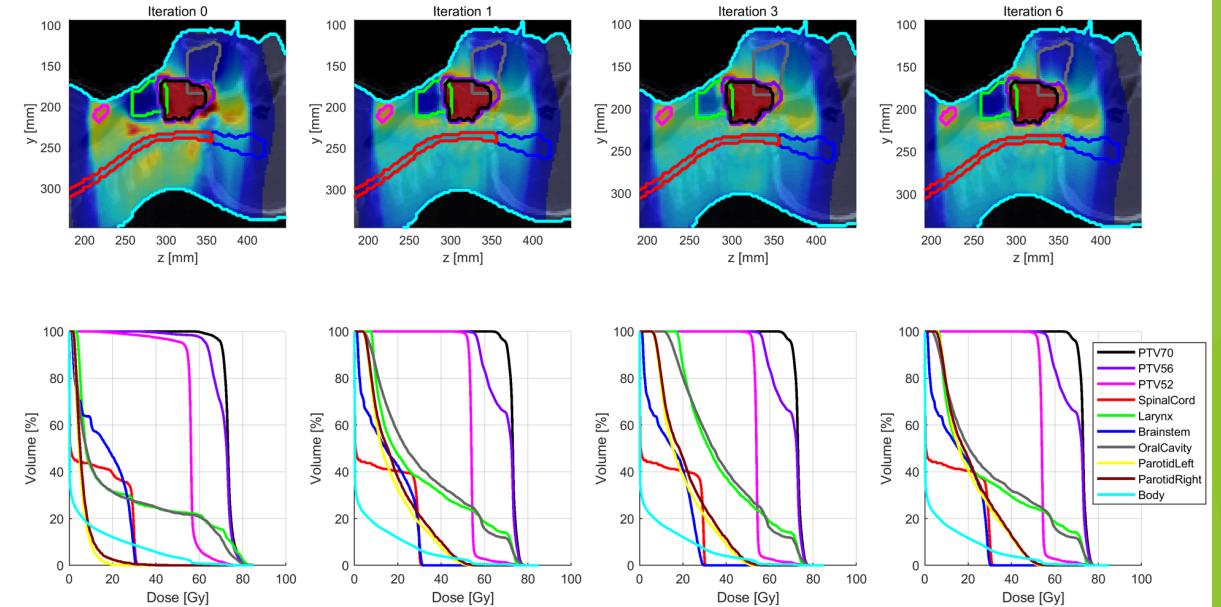
# Clinical plans vs GPT-RadPlan

- ▶ Relative error between metrics from clinical plans and GPT-RadPlan
- ▶ Compares plans **case-by-case**
- ▶ Positive values → lower GPT-RadPlan metrics, better sparing



# Planning trajectories

1. Initialize plan based on average parameters
2. Ensure PTV homogeneity and conformity
3. Spare OARs while maintaining PTV coverage



# MULTIMODAL FOUNDATION MODELS

- Huge number of diseases
  - Different types of models
  - Various data formats
  - Noise, small sample size, missing data, ...



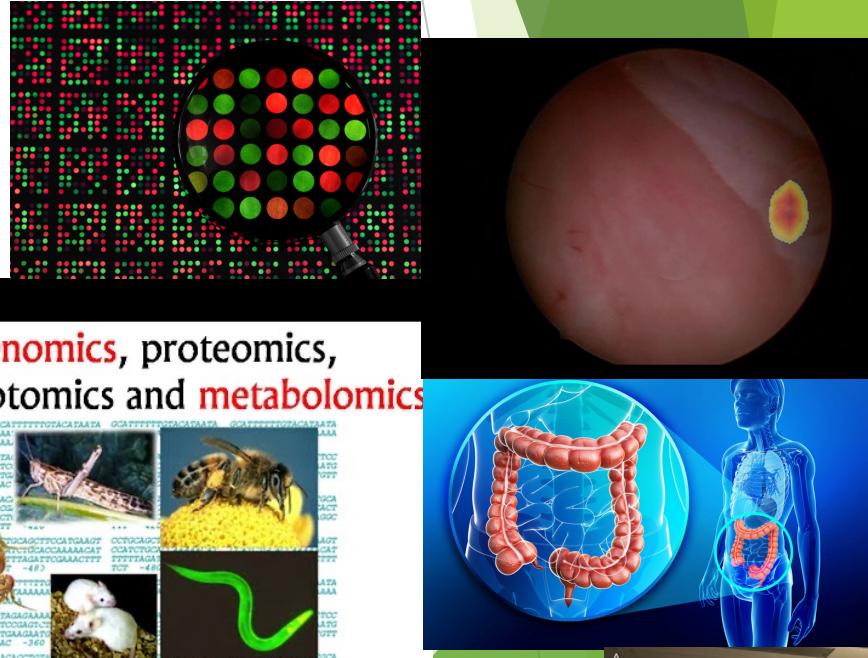
# Revealing Neurocognitive Patterns by Self-Supervised Learning of Manifold Embedding from Dynamic Brain Data

Zixia Zhou<sup>1</sup>, Junyan Liu<sup>1</sup>, Wei Emma Wu<sup>1</sup>, Sheng Liu<sup>1</sup>, Qingyue Wei<sup>1</sup>, Rui Yan<sup>1</sup>, Yi Guo<sup>2</sup>, Qian Tao<sup>3</sup>, Yuanyuan Wang<sup>2</sup>, Md Tauhidul Islam<sup>1\*</sup>, and Lei Xing<sup>1\*</sup>

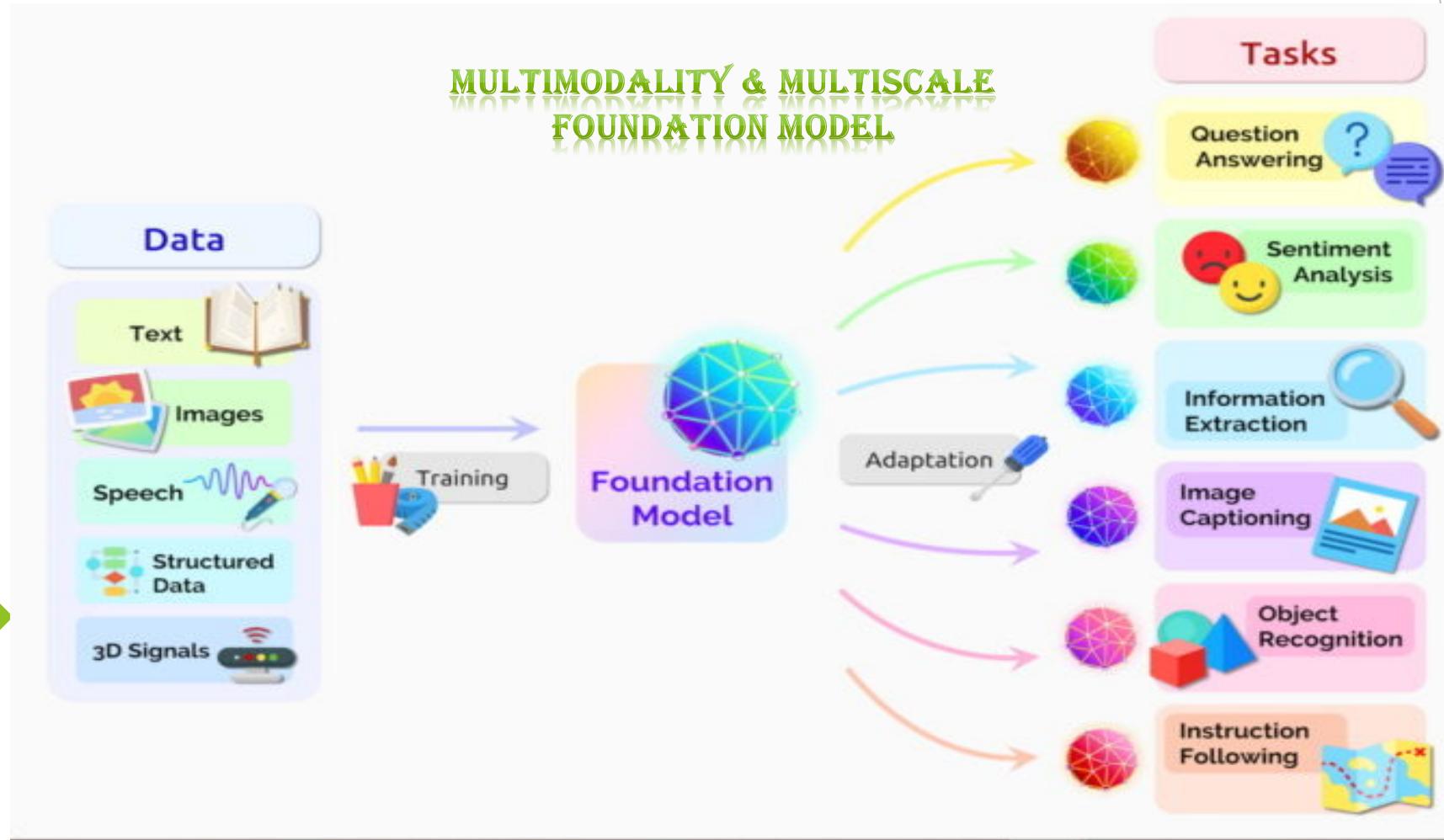
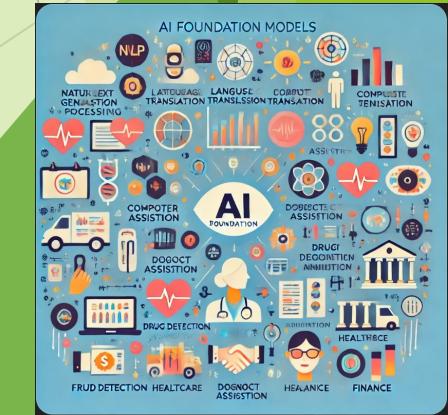
Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA

Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China

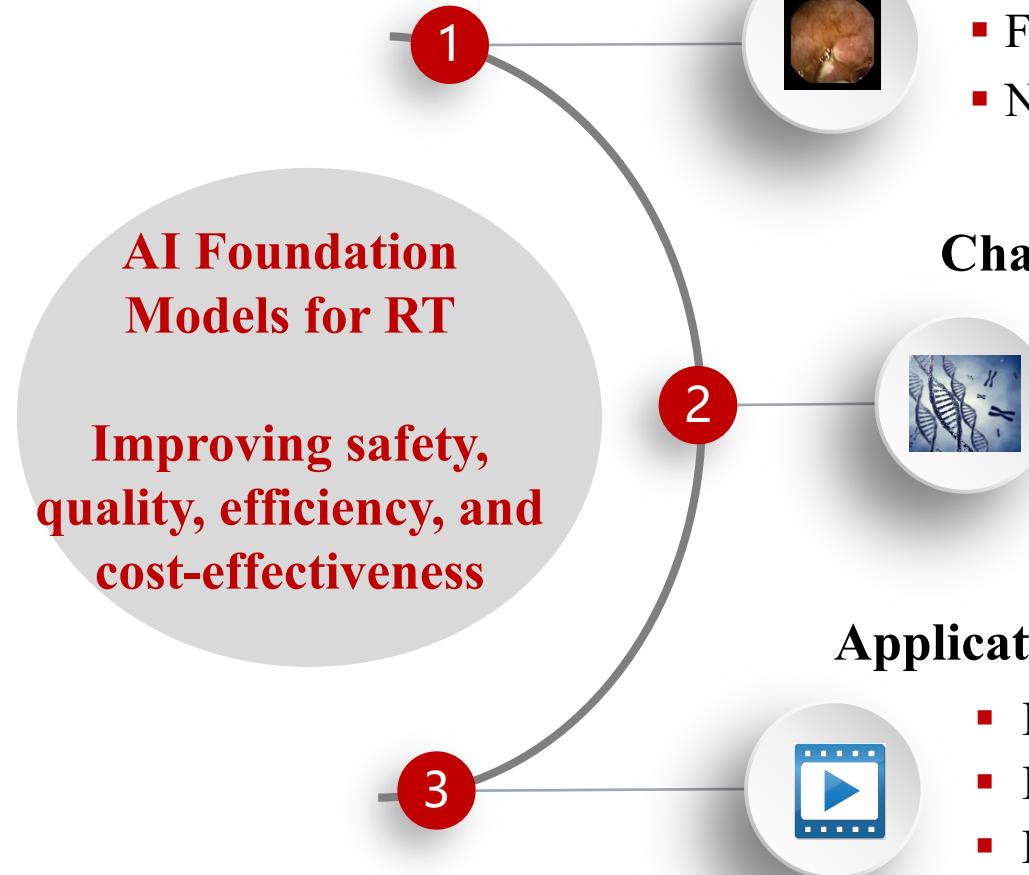
Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands



# AI & FM FOR FUTURE HEALTHCARE



# Summary



## Foundation models

- Characteristics
- Feature extraction & feature visualization
- Novel deep learning strategies & FMs

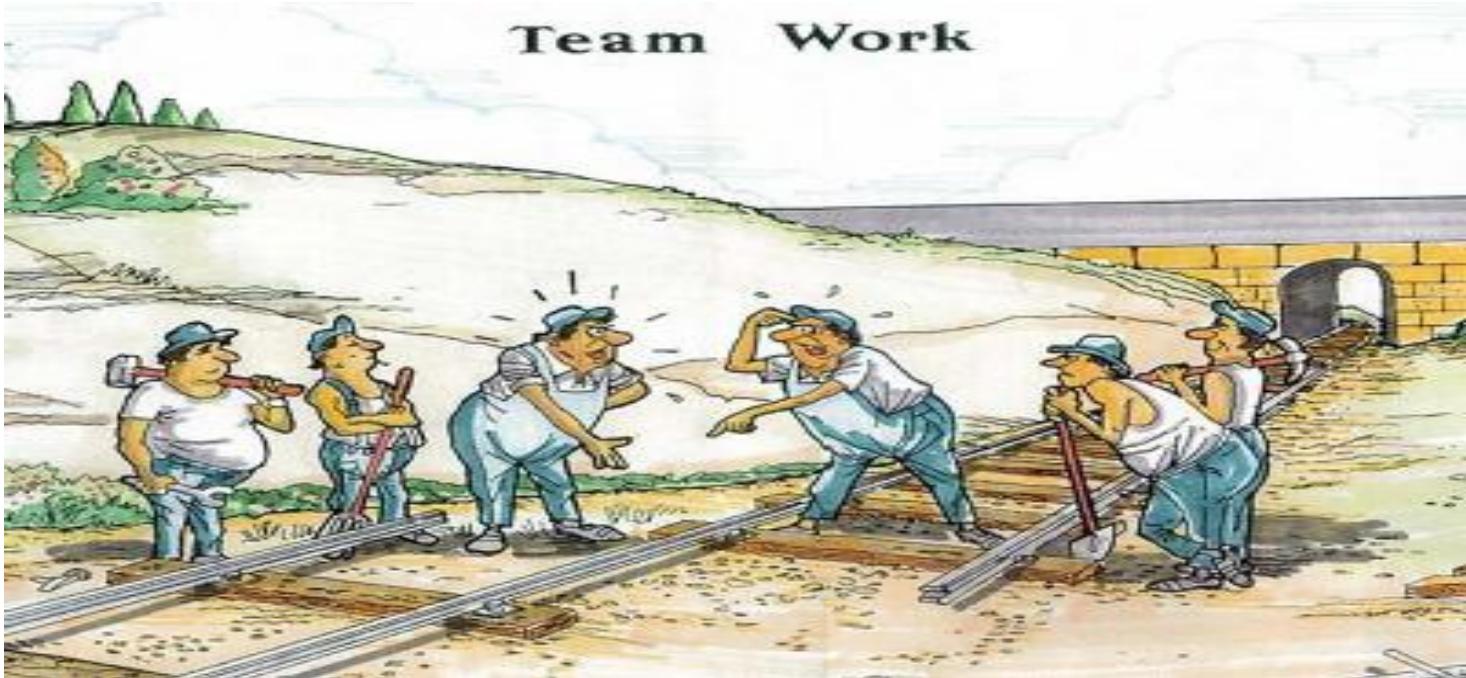
## Challenges in AI FMs

- Data requirements & computational resources
- Deployment – scalability, maintenance & update
- Ethical concerns – bias privacy, responsible use
- Multimodality integration

## Applications of FMs in imaging & RT

- In-context learning
- Image analysis
- RT treatment plan evaluation & planning
- Multimodal FMs for healthcare

# Acknowledgements



- ❖ NIH: 1R01CA223667, 1R01CA227713, and 1R01CA256890
- ❖ Google Inc.
- ❖ Varian Medical systems, Mevion Medical Systems



November 7<sup>th</sup> - Medical Physics Day

MEDICAL PHYSICS TEAM AT STANFORD

