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&1 FOUNDATION MODELS

*Definition:
Foundation models are large-scale machine learning models trained
of data. They are designed to be adaptable to a wide range of tasks

Characteristics:

Large scale: large number of parameters & datasets
Generalization:jcapabte o performingvarious
task-specific training

Adaptability: can be fine-tuned for specific applications
Self-supervised




nature medicine

Avisual-language foundation model for
computational pathology
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High Energy Physics - Phenomenology

[Submitted on 8 Mar 2024]
T_4 OmniJet-a: The first cross-task foundation model for particle physics
6 i Joschka Birk, Anna Hallin, Gregor Kasieczka -ated adoption of digital pathology and advances in deep learning

Foundation models are multi-dataset and multi-task machine learning methods that once pre-trained can be fine-tuned for a large variety of Ed the development Of rObUSt mOdeIS fOl' various pathOIOgy
downstream applications. The successful development of such general-purpose models for physics data would be a major breakthrough as they S a diverse array of diseases and patient cohorts. However,

could improve the achievable physics performance while at the same time drastically reduce the required amount of training time and data. ling is often difﬁCUlt due to label scarcity in the medical domain’
We report significant progress on this challenge on several fronts. First, a comprehensive set of evaluation methods is introduced to judge the B gl It g 2 = A

quality of an encoding from physics data into a representation suitable for the autoregressive generation of particle jets with transformer !l susagelis Ilmlted by the SpeCIﬁc taSk and dlsease fOf WhICh
architectures (the common backbone of foundation models). These measures motivate the choice of a higher-fidelity tokenization compared to o Additiona”y, most mOde|S in hiStOpathOlOgy |everage Only

prev?ous w-orks. Finally, weAdemonstrate trarfsfer Iearlning between an unsupervised problem (jet generati?n) and alclassic supervised task (jet ,a Stal’k contrast to hOW humans teach each other and reason
tagging) with our new OmniJet-a model. This is the first successful transfer between two different and actively studied classes of tasks and

G PT— 1 constitutes a major step in the building of foundation models for particle physics. ypathologic entities. We introduce CONtrastive learning from
117 M o Hlstopathology (CONCH), avisual-language foundatlon model

Subjects: High Energy Physics - Phenomenology (hep-ph); Machine Learning (cs.LG); High Energy Physics - Experiment (hep-ex); Data Analysis, Statistics and Probability
1 M _ (physics.data-an)
I ! T ! Cite as:  arXiv:2403.05618 [hep-ph]

2 O 1 8 2 0 2 0 2 0 2 2 2 0 2 4 (or arXiv:2403.05618v1 [hep-ph] for this version)
https://doi.org/10.48550/arXiv.2403.05618 o
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Alan Yuille' Yuyin Zhou® A New Al Tool Predicts Gene Expression in a Single Cell
segment Anything Model 'Johns Hopkins University 2UC Santa Cruz

An artificial intelligence tool, scGPT, can identify cell types, predict the effects of
disrupting genes, and pinpoint which genes interact with each other.

AbStl‘aCt a Carissa Wong, PhD




. Fine-tuning

. prompting

. In-context learning

ranscribing

In-context Vectors: Making In Context Learning More Effective
and Controllable Through Latent Space Steering

Sheng Liuf, Lei Xing', James Zou
T Stanford University
{shengl, lei, jamesz}@stanford.edu

Warning: This paper includes examples and model-generated content that may be deemed offensive.

Abstract

Large language models (LLMs) demonstrate emergent in-context learning capabilities, where
they adapt to new tasks based on example demonstrations. However, in-context learning has
seen limited effectiveness in many settings, is difficult to quantitatively control and takes up
context window space. To overcome these limitations, we propose an alternative approach
that recasts in-context learning as in-context vectors (ICV). Using ICV has two steps. We first
use a forward pass on demonstration examples to create the in-context vector from the latent
embedding of the LLM. This vector captures essential information about the intended task. On a
new query, instead of adding demonstrations to the prompt, we shift the latent states of the LLM
using the ICV. The ICV approach has several benefits: 1) it enables the LLM to more effectively
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Al Foundation Models

- Versatility: One model can be adapted for
multiple tasks (e.g., language translation,
summarization, gquestion answering).

Assessing the limits of zero-shot foundation models
in single-cell biology

- Efficiency: Reduces the need for developing
and training models from scratch for different
tasks.

Kasia Z. Kedzierska'!; Lorin Crawford?, Ava P. AminiZ, Alex X. Lu?
1University of Oxford, Oxford, UK: 2Microsoft Research, Cambridge, MA, USA
kasia@well.ox.ac.uk, {lcrawford, ava.amini, lualex}@microsoft.com

Abstract
The dep loyment Of FMS need to The advent and success of foundation models such as GPT has sparked growing interest in

. their application to single-cell biology. Models like Geneformer and scGPT have emerged
be CauthUS - more focused with the promise of serving as versatile tools for this specialized field. However, the efficacy

of these models, particularly in zero-shot settings where models are not fine-tuned but used

resea rCh 'iS necessary to realize without any further training, remains an open question, especially as practical constraints

require useful models to function in settings that preclude fine-tuning (e.g., discovery settings

. where labels are not fully known). This paper presents a rigorous evaluation of the zero-shot

the pOtentlal Of FMS * performance of these proposed single-cell foundation models. We assess their utility in tasks

such as cell type clustering and batch effect correction, and evaluate the generality of their

retraining objectives. Our results indicate that both Geneformer and scGPT exhibit limited

reliability in zero-shot settings and often underperform Compared to simpler methods. These

findings serve as a cautionary note for the deployment of proposed single-cell foundation
models and highlight the need for more focused research to realize their potential.>
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Revealing hidden patterns in deep neural ARTICLES ature
network feature space continuum via s dolorg 01098/ SSE1020-006353 biomedical engineering
manifold learning B o e

e sre—— N o, e OV i o oy R W oot Kzt A data-driven dimensionality-reduction algorithm
Daniel Kapp', James Zou®?2, Lu Tian?, Joseph C. Liao®3 & Lei Xing ®" . . . .
for the exploration of patterns in biomedical data

Accepted: 24 November 2023

Published online: 21 December 2023

Deep neural networks (DNNs) extract thousands to millions of task-specific
\®|Check for updates features during model training for inference and decision-making. While
visualizing these features is critical for comprehending the learning process
and improving the performance of the DNNSs, existing visualization techniques
work only for classification tasks. For regressions, the feature points lie on a  Dimensionality reduction is widely used in the visualization, compression, exploration and classification of data. Yet a generally
high dimensional continuum having an inherently complex shape, making a  applicable solution remains unavailable. Here, we report an accurate and broadly applicable data-driven algorithm for dimen-
meaningful visualization of the features intractable. Given that the majority of Sionality reduction. The algorithm, which we named ‘feature-augmented embedding machine' (FEM), first learns the structure
of the data and the inherent characteristics of the data components (such as central tendency and dispersion), denoises the
data, increases the separation of the components, and then projects the data onto a lower number of dimensions. We show that
the technique is effective at revealing the underlying dominant trends in datasets of protein expression and single-cell RNA
Input data sequencing, computed tomography, electroencephalography and wearable physiological sensors.

manifold
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[Submitted on 25 Jun 2024]

Data curation via joint example selection further accelerates multimodal learning
Talfan Evans, Nikhil Parthasarathy, Hamza Merzic, Olivier J. Henaff

Data curation is an essential component of large-scale pretraining. In this work, we demonstrate that jointly selecting batches of data is more
effective for learning than selecting examples independently. Multimodal contrastive objectives expose the dependencies between data and thus
naturally yield criteria for measuring the joint learnability of a batch. We derive a simple and tractable algorithm for selecting such batches, which
significantly accelerate training beyond individually-prioritized data points. As performance improves by selecting from larger super-batches, we
also leverage recent advances in model approximation to reduce the associated computational overhead. As a result, our approach--multimodal
contrastive learning with joint example selection (JEST)--surpasses state-of-the-art models with up to 13 x fewer iterations and[10>< less ]

[ computation.]Essential to the performance of JEST is the ability to steer the data selection process towards the distribution of smaller, well-
curated datasets via pretrained reference models, exposing the level of data curation as a new dimension for neural scaling laws.

Comments: Main text: 9 pages, 5 figures, 3 tables, 1 algorithm. Appendix: 7 pages, 5 figures, 1 table, 2. algorithm
Subjects:  Machine Learning (cs.LG); Atrtificial Intelligence (cs.Al)

Cite as: arXiv:2406.17711 [cs.LG]

(or arXiv:2406.17711v1 [cs.LG] for this version)

https://doi.org/10.48550/arXiv.2406.17711 6
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Cartography of Genomic Interactions
Enables Deep Analysis of Single-Cell
Expression Data

Received: 19 August 2022 Md Tauhidul Islam®" & Lei Xing®"

Accepted: 30 January 2023

Remarkable advances in single cell genomics have presented unique chal-
lenges and opportunities for interrogating a wealth of biomedical inquiries.
High dimensional genomic data are inherently complex because of inter-
twined relationships among the genes. Existing methods, including emerging
deep learning-based approaches, do not consider the underlying biological
characteristics during data processing, which greatly compromises the per-
formance of data analysis and hinders the maximal utilization of state-of-the-

art genomic techniques. In this work, we develop an entropy-based carto-
oranhv ctrateov ta cantrive the hich dimencinnal oene pxnreccinn data intn a

Published online: 08 February 2023

|®Check for updates

https://www.nature.com/articles/s41467-023-36383-6
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Deep analysis of RNA-seq data
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Fig. 4 | Visualization of ischaemic sensitivity dataset (left-lung, middle-eso-
phagus, right-spleen). a UMAP visualizations of raw data. b UMAP visualizations of
the genomap features at the fully connected layer of the genoNet. Major

improvements in cluster separation are indicated by arrows. Color legends of the

data classes are added in Supplementary Fig. S22. ¢ Classification accuracy of dif-
ferent techniques including genomap+genoNet. Here, Cell-ID(c) and Cell1D(g)
denote Cell-ID technique with cell-to-cell and cell-to-group matching formulation.
Source data are provided as a Source Data file.




How can FMs help Al Radiation Therapy?

Introduce additional information to enhance the solution. Eeesioss

» Tumor volume delineation
» Treatment planning
» Clinical decision making

Input module

mmmmmmmmm

> Med Phys. 2020 Dec;47(12):6421-6429. doi: 10.1002/mp.14517. Epub 2020 Oct 24.

Automatic intraprostatic lesion segmentation in
multiparametric magnetic resonance images with
proposed multiple branch UNet

Yizheng Chen ', Lei Xing ', Lequan Yu ', Hilary P Bagshaw ', Mark K Buyyounouski ', Bin Han '

Affiliations + expand
PMID: 33012016 DOI: 10.1002/mp.14517
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Multimodal Learning-Based Automatic Delineation
of Treatment Target Volume in Radiation Therapy
Using Large Language Models

Praveenbalaji Rajendran, Yong Yang, Thomas R. Niedermayr, Michael Gensheimer, Beth Beadle,
Quynh-Thu Le, Lei Xing, and Xianjin Dai*

Abstract— Radiation therapy (RT) is one of the most
effective treatments for cancer, and its success relies on
the accurate delineation of targets. However, target
delineation is a comprehensive medical decision that
currently relies purely on manual processes by human
experts. Manual delineation is time-consuming, laborious,
and subject to interobserver variations. Although the
advancements in artificial intelligence (Al) techniques have
significantly enhanced the auto-contouring of normal
tissues, accurate delineation of RT target volumes remains

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. X, NOVEMBER 2020

However, manual contouring of target volume is a complex,
laborious process, subject to intra- and inter-observer variations
[5]. Moreover, studies have demonstrated that a fire amount of
the manually delineated target volumes are subjected to
changes during the peer review process [6]-[8]. Over the last
decade, deep learning (DL) has achieved significant progress in
medical 1mage segmentation tasks. Convolutional neural
network (CNN) has demonstrated significant achievements in
medical 1mage segmentation [9]-[16]. Among
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Automated radiotherapy treatment planning guided by
GPT-4Vision

Sheng Liu'?* Oscar Pastor-Serrano'*, Yizheng Chen!, Matthew Gopaulchan®,
Weixing Liang?, Mark Buyyounouski!, Erqi Pollom!, Quynh-Thu Le!,
Michael Gensheimer!, Peng Dong', Yong Yang!, James Zou??! and Lei Xing!'
'Department of Radiation Oncology, Stanford University, Stanford, CA, USA
2Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
3Department of Computer Science, Stanford University, Stanford, CA, USA

Abstract

Radiotherapy treatment planning is a time-consuming and potentially subjective process that requires
the iterative adjustment of model parameters to balance multiple conflicting objectives. Recent
advancements in frontier AI models offer promising avenues for addressing the challenges in planning
and clinical decision-making. This study introduces GPT-RadPlan, an automated treatment planning
framework that integrates radiation oncology knowledge with the reasoning capabilities of large multi-
modal models, such as GPT-4Vision (GPT-4V) from OpenAl. Via in-context learning, we incorporate
clinical protocols for various disease sites to enable GPT-4V to acquire treatment planning domain
knowledge. The resulting GPT-RadPlan agent is integrated into our in-house inverse treatment
planning system through an API. For a given patient, GPT-RadPlan acts as both plan evaluator and
planner, first assessing dose distributions and dose-volume histograms (DVHs), and then providing
“textual feedback” on how to improve the plan. In this manner, the agent iteratively refines the
plan by adjusting planning parameters, such as weights and objective doses, based on its suggestions.
The efficacy of the automated planning system is showcased across multiple prostate and head &
neck cancer cases, where we compared GPT-RadPlan results to clinical plans produced by human
experts. In all cases, GPT-RadPlan either outperformed or matched the clinical plans, demonstrating
superior target coverage and organ-at-risk sparing. Consistently satisfying the dosimetric objectives
in the clinical protocol, GPT-RadPlan represents the first multimodal large language model agent
that mimics the behaviors of human planners in radiation oncology clinics, achieving promising results
in automating the treatment planning process without the need for additional training.

Stanford Medical Physics

Al Foundation Model (FM) is coming to medical physics! We are pleased that

the work to use FM for automated RT planning is selected as one of "the Best
in Physics" at the upcoming AAPM annual meeting. Congratulations to Oscar,
Sheng, and all co-authors!

I

Liu S, Pastor-Serrano O, ...
arXiv:2406.15609, 2024



GPT-RadPlan

» Based on GPT4-Vision

» Evaluation module:
- DVH Expert - compares metrics with protocol/intent

- Image expert - evaluates dose distribution and presence
of hot/cold spots

- Aggregation module - improvement suggestions

» Planner module: suggest new parameters based on
- Stored information from previous iterations
- The current plan

- 3 reference approved plans from the same disease site

0N Stanford -
MEDICINE School of Medicine
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DVH comparison

GPT-RadPlan consistently meets the protocols
Overall, 15% reduction in prostate mean dose

Prostate:
» Better PTV coverage (HI 1.96 vs 5.43, Cl1 0.92
vs 0.88)

« Better rectum sparing

« Slightly better bladder sparing

« Similar femoral head sparing, avoids higher
doses

Head and neck:

« Similar PTV coverage, more conformal (Cl
0.96 vs 0.84)

» Better larynx, oral cavity, parotid sparing

« Similar brainstem and spinal cord sparing

Stanford School of Medicine
MEDICINE
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Clinical plans vs GPT-RadPlan
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Planning trajectories

1. Initialize plan based on average parameters
2. Ensure PTV homogeneity and conformity

3. Spare OARs while maintaining PTV coverage
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MULTIMODAL FOUNDATION
MODELS

. Huge number of diseases =
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Revealing Neurocognitive Patterns by Self-Supervised
.earning of Manifold Embedding from Dynamic Brain Data
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&l & FM FOR FUTURE HEALTHCARE

Tasks
MULTIMODALITY & MULTISCALE

FOUNDATION MODEL ‘
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Summary

Foundation models
= Characteristics

= Feature extraction & feature visualizatio

= Novel deep learning strategies & FMs

Al Foundation
Models for RT

Challenges in AI FMs

= Data requirements & computational resc

i = Deployment — scalability, maintenance &
Improving safety,

quality, efficiency, and
cost-effectiveness

= Ethical concerns — bias privacy, responsib

= Multimodality integration

Applications of FMs in imaging & RT

= In-context learning

E = Image analysis
= RT treatment plan evaluation & plannin

= Multimodal FMs for healthcare

Stanford University
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