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Use of Al in radiotherapy

Pubmed search for papers “Al + radiotherapy”
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Applications of data bases and Al/expert systems in radiation therapy.

Laramore GE, Altschuler MD, Banks G, Kalet 1J, Pajak TF, Schultheiss TE, Zink S.

Am J Clin Oncol. 1988 Jun;11(3):387-93. doi: 10.1097/00000421-198806000-00015.

PMID: 3289369  Review.  No abstract available. Memorial Sloan Kettering

Cancer Center



Key innovations in deep learning
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Al is applicable in almost every aspect of radlotherapy

Contents lists available at ScienceDirect

Radlqlhempy

Radiotherapy and Oncology

ELSEVIER journal homepage: www.thegreenjournal.com

Review Article

Overview of artificial intelligence-based applications in radiotherapy: !
Recommendations for implementation and quality assurance el

H)

Liesbeth Vandewinckele *”'', Michaél Claessens ““"', Anna Dinkla '**, Charlotte Brouwer ', Wouter Crijns °
Dirk Verellen ““, Wouter van Elmpt ?

2 Department Oncology, Laboratory of Experimental Radiotherapy, KU Leuven; ® Department of Radiation Oncology, UZ Leuven; © Faculty of Medicine and Health Sciences, University of
Antwerp; ¢ Department of Radiation Oncology, Iridium Cancer Network, Wilrijk (Antwerp); © Department of Radiation Oncology, Amsterdam University Medical Center, University of
Amsterdam; "University of Groningen, University Medical Center Groningen, Department of Radiation Oncology: and * Department of Radiation Oncology (Maastro), GROW School for
Oncology, Maastricht University Medical Centre+
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Clinical implementation of deep learning at MSK

> Phys Imaging Radiat Oncol. 2019 Oct:12:80-86. doi: 10.1016/j.phro.2019.11.006.
Epub 2019 Dec 12.

Deep learning-based auto-segmentation of targets
and organs-at-risk for magnetic resonance imaging
only planning of prostate radiotherapy

Sharif Elguindi 1, Michael J Zelefsky 2, Jue Jiang 1, Harini Veeraraghavan 1, Joseph O Deasy 1,
Margie A Hunt 7, Neelam Tyagi '

2012° 2015 2019
1988 Q< N \@é‘ MR guided
prostate cancer
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I Challenges for clinical implementation

Expectation Reality due to data limitations

Al model Development ﬁ

Al model Developmentﬁ

* * < i 3 /uxik

Training Vamation Training + Validation

Optimize Select hyper- Data released . .. :
+ +
parameters  parameters  after model Training + Validation + Testing
buildin .
J Requires nested cross

validation to avoid data leak;
Results are sub-optimal
Memorial Sloan Kettering

Prevents data leakage and ensures

validity of model results




Challenges for clinical implementation

Expectation Reality

Al model G Al model ﬁ}
< . 4

Clinical test data Covariate shift due || Concept shift due
resembles training to data distribution || to pathological
data differences differences

n distribution data Some data is ID, a lot of it is out
(ID) is used of distribution (OOD)
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Clinical Implementation Challenges: Covariate shift

Training + Validation

M rrrr—

Training/Validation, 1.5 T GE
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Differences in Apparent diffusion coefficient distributions of 1,277 prostate cancers taken

from four different testing datasets

Simeth ... Veeraraghavan et.al
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Clinical Implementation Challenges: Concept drift

Training: Stage | — 1l non-small
cell lung cancer

-

Testing: Pre & non-cancerous lesions
Memorial Sloan Kettering
Teha Cancer Center



Clinical Implementation Challenges: Concept drift

Training: Stage | — Il non- | | Training: normal
small cell lung cancer anatomy

- Al

Testing: Abnormal
anatomy

Testing: Pre & non-
cancerous lesions
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Clinical Implementation Challenges: Concept drift
Training: Stage | — Il non- | | Training: normal Training: Incomplete
small cell lung cancer anatomy segmentations

C)

[ Al model A

Testing: Non cancers
anatomy
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I Increasing trustworthiness of Al models in clinic

Online and routine Quality Assurance

| rining :{){ Al model }:{)[ Clnical
mode
s . ral Deployment )

Concept Drift: Solutions: Covariate shift:
Different disease; » Maximally use labeled data Different
abnormal > Increase data diversity distribution;
anatomy; through domain adaptation Contrast

Different output\ » Assess performance drifts | differences;..

$ Memorial Sloan Kettering
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Improving robustness of Al models




I “Learning” is about extracting useful features

Model training should focus on extracting features that robustly
differentiate foreground (structure/organ of interest) from background

$ Memorial Sloan Kettering
ot J Cancer Center



I “Learning” is about extracting useful features

» Increase training data variability
» Regularize training to extract “useful” features

$ Memorial Sloan Kettering
ot J Cancer Center



> Med Phys. 2023 Aug;50(8):4854-4870. doi: 10.1002/mp.16320. Epub 2023 Mar 13.

Deep learning-based dominant index lesion
segmentation for MR-guided radiation therapy of
prostate cancer

Josiah Simeth 1, Jue Jiang 7, Anton Nosov 2, Andreas Wibmer 2, Michael Zelefsky 2,
Neelam Tyagi ', Harini Veeraraghavan '

Multiple residual streams (RO, R1,R2) carry image

Input information at each image resolution level
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Extract a richer feature representation by combining
residual and dense connections in a deep network

! . R s - |
k. -
y 93

| ]

DSC:0.85

o

Siemens 3 Tesla

My

b 14
(PZ, GS: 9) psg 7 (1, s:7)

GE 1.5 Tesla
k vy L

:’.-

¥ i‘*ewm

DSC%0.77. (PZ, G5:8) QSEiO 80 (PZ, GSi

Phillips 3Tes|a

"a- h_

. ‘."‘,_ "‘ ‘ ‘:j.‘. ;L::‘a%

B T
d;:-& .' "J

“DSC 0, 41

Memorial Sloan Kettering
Cancer Center



Improving segmentation accuracy on OOD data
Unet MRRN Unet MRRN

Phillips 3 Tesla Siemens 3 Tesla

Extracting a richer feature representation by combining residual connections
and dense features increases capability to handle data variations in MRRN

$ Memorial Sloan Kettering
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Implicit feature augmentation with mixup to further
regularize network training

MRRN 3T Siemens 3T Philips 1.5T Philips
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Improved reqularization leads to better generalization

dCross scanners
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Using domain adaptation for increasing data variability

October 2019 | Volume 46, Issue 10

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

CT Image Generated MRI
S v:d Our apprqach
" Tumor-aware

Comparison methods

Cycle GAN UNIT GAN

Jiang J, .. Deasy J, Veeraraghavan H 2018

. AMERICAN ASSOCIATION

Good constraints are FECIUIFEd to ensure preservatlon of structures like tumors




Cross domain adaptation for improving segmentation

> Med Phys. 2020 Aug;47(8):3415-3422. doi: 10.1002/mp.14196. Epub 2020 May 11.

Pelvic multi-organ segmentation on cone-beam CT
for prostate adaptive radiotherapy

Yabo Fu 1, Yang Lei !, Tonghe Wang 1, Sibo Tian 1, Pretesh Patel 7, Ashesh B Jani 7,
Walter J Curran 1, Tian Liu 7, Xiaofeng Yang '

Ground truth CBCT+sMRI

Uses high soft-tissue contrast in MRI to improve cone beam CT segmentation

$ Memorial Sloan Kettering
Teha Cancer Center



Cross modality distillation to learn “better” features

Problem: Features extracted directly from CT cannot sufficiently
discriminate tumor from background

Standard CT
Segmentor

Synthetic MRI

MR
Segmentor

$ Memorial Sloan Kettering
Teha Cancer Center




Leverage MRI to regularize CBCT network and
extract “relevant” features

> Med Phys. 2021 Apr 27. doi: 10.1002/mp.14902. Online ahead of print.

Deep cross-modality (MR-CT) educed distillation
learning for cone beam CT lung tumor segmentation

Jue Jiang 1, Sadegh Riyahi Alam 1, Ishita Chen 2, Perry Zhang ', Andreas Rimner 2,

Joseph O Deasy ', Harini Veeraraghavan '

b % CBCT R
5 - O,
B [P

» Practical no need for paired multi- | &8 '::) SEGMENTOR [ §
modality datasets o M FoaTURe N i
» Efficient only needs the CBCT CRg_
network for testing MODALITY ¢> ,,
» Accurate because errors in MODEL
synthesis do not propagate at
testing

$ Memorial Sloan Kettering
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Why does CMEDL regularization work?

CBCT
Segmentor
3DUnet

CMEDL CBCT
3DUnet

Cross modality distillation forces network to learn features signaling
contrast between foreground and background

$ Memorial Sloan Kettering
ot J Cancer Center



Does CMEDL improve accuracy?

— Algorithm
Expert

CBCT using CMEDL 3D Unet

$ Memorial Sloan Kettering
Teha Cancer Center



Does CMEDL really work?

+ Background

S0+t

50 0

CBCT 3D Unet

50

S0t

BT

50 0

50

CBCT CMEDL 3D Unet

Results from mix of public and internal 38 test cases




> IEEE Trans Med Imaging. 2022 Feb 25;PP. doi: 10.1109/TMI.2022.3154934. Online ahead of print.

One shot PACS: Patient specific Anatomic Context
and Shape prior aware recurrent registration-
segmentation of longitudinal thoracic cone beam CTs

Jue Jiang, Harini Veeraraghavan

Patient specific segmentation combining registration

Memorial Sloan Kettering
Cancer Center



> Phys Imaging Radiat Oncol. 2024 Feb 1:29:100542. doi: 10.1016/j.phro.2024.100542.
eCollection 2024 Jan.

Artificial intelligence-based automated
segmentation and radiotherapy dose mapping for
thoracic normal tissues

Jue Jiang 1, Chloe Min Seo Choi 1 2, Joseph O Deasy ', Andreas Rimner 3, Maria Thor 7,

Harini Veeraraghavan '
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Models also need to be trustworthy to
ensure Fair and Uninterrupted
treatments

$ Memorial Sloan Kettering
ot J Cancer Center



Multiple dimensions of trustworthiness

» Prespecified methods to update and

Change control plan

evaluate models

Review > PET Clin. 2022 Jan;17(1):1-12. doi: 10.1016/j.cpet.2021.09.007.

Trustworthy Artificial Intelligence in Medical

Imaging

Navid Hasani 1, Michael A Morris 2, Arman Rhamim 3, Ronald M Summers 4, Elizabeth Jones

» Commissioning testing and testing

data used for updates

Eliot Siegel °, Babak Saboury ©
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Deploying Al models in clinic

Not passed
Clinician or anatomist

or low accuracy on Clinical

challenge cases ' feedback

Commissioning
testing

Al model

trammgA Life CyC le

Data assembly
(Clinically edited datasets
used to increase data size)

J Clinical

Al model(s) |@eployment

‘ Routine
QA

Clinical
feedback

» Defined metrics for success
» Standardized development and testing
pipeline
» Commissioning testing sets separate

from training & validation + “challenge”
cases from prospectively scanned cases

» Online Quality assessment
» Involve various stakeholders in the
development, testing, and

commissioning process
» radiation oncologists, physicists,
computer scientists, anatomists,
radiologists

$ Memorial Sloan Kettering
Teha Cancer Center




Multiple dimensions of trustworthiness

Robustness and Fairness

> Resilience to data variations and
drifts

.......

» Reduced bias to under-represented o
populations
“\:_‘C;"
Review > PET Clin. 2022 Jan;17(1):1-12. doi: 10.1016/j.cpet.2021.09.007.
Trustworthy Artificial Intelligence in Medical
Imaging
Navid Hasani 1, Michael A Morris 2, Arman Rhamim 3, Ronald M Summers 4, Elizabeth Jones 4,

Eliot Siegel °, Babak Saboury ©
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® TCIA test data

® Lung Phantom

In distribution

Rangnekar, ... Veeraraghavan In submission.

o 2N
A

Analyzing robustness of Al model to concept drift

COVID-19

win UNETR - SMIT
Out of distribution .......,

\ 4 aanva v aavea



Quantifying performance drifts is essential to make
improvements

Lung reconstruction Smooth reconstruction Non-contrast Phantom
/ A ; :‘ ' ! r—— e —

S — ~
- — M .
- -

= Same model can result in performance variations with changes in images even from
same patient

" Models need to assessed not only for accuracy but also for performance drifts when
employed in continuous clinical use

Memorial Sloan Kettering
Jiang, Rangnekar, Veeraraghavan o, J Cancer Center



Standard metrics may be insufficient to detect drifts

Model DSC (1) RVD (]) Pr (1) Rc (1)
Swin

UNETR

SMIT 0.798 + 0.075  0.157 + 0.281 0.131 0.635

0.783 + 0.091 0.175 £ 0.329 0.035 0.578

Accuracy metrics show similar performance of two different networks ‘

Memorial Sloan Kettering
Rangnekar, ... Veeraraghavan https://arxiv.org/abs/2403.13113 55,/ Cancer Center
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Sl COVID-19lung 89.85% 34.62
CT

.S‘().LII"CL: | Source ‘ Targct Abdomen CT 99.02 % 5.77
SMIT SMIT

(a) Near-OOD (b) Far-OOD
COVID-19 Chest CT Abdomen CT

= AUROC measures the accuracy of correctly detecting the lung tumors when they occur
and not detecting other lesions as lung tumors

FPR @ 95 or False positive rate at 95% measures the probability that a negative (out-

of-distribution) example or non-lung tumor is segmented as positive (or in-distribution)
lung tumor with a True Positive Rate as high as 95%

Memori(z:al Sloan Kettering
Rangnekar.. Veeraraghavan 2024, https://arxiv.org/abs/2403.13113 ey Cancer Center



I Differences emerge when analyzing OOD performance

(a) Near-OOD
COVID-19 Chest CT

' SMIT
(b) Far-OOD
Abdomen CT

” W R
' ‘L' \

. Swin

COVID-19 89.19% 34.62

COVID-19 89.85% 34.62
Abdomen CT 82.39% 38.46

Abdomen CT 99.02% 5.77

$ Memorial Sloan Kettering
ot J Cancer Center



Increasing robustness to image variations

ON THE CHALLENGES AND PERSPECTIVES OF FOUNDATION
MODELS FOR MEDICAL IMAGE ANALYSIS

A PREPRINT
Shaoting Zhang Dimitris Metaxas '
Shanghai Al Laboratory Rutgers University /2
Shanghai, China New Brunswick, NJ, USA | S fne
zhangshaoting@pjlab.org.cn dnm@cs .rutgers.edu I m:}:;f;g ;
Model ;‘“‘ Y1) f]
ot K

A Aoy
[ . _“' .
Organ-specific ,‘
Foundation Models @

Task-specific

Foundation Models

Medical foundation models or large pretrained models could allow to solve a
wide range of tasks by accelerating the development of accurate models, while
reducing need for large amounts of labeled training data

$ Memorial Sloan Kettering
Teha Cancer Center



Self-supervised learning background

» Machine learning approach that uses unsupervised learning
for tasks that conventionally require supervised learning

— Instead of relying on supervised labels, generate implicit labels from
unstructured data

— Can be more time efficient and effective for massive datasets

— Tasks are designed such that loss function can use unlabeled data
as “ground truth” to extract meaningful representations

— Pretext tasks yield pseudo labels

’-.f-.ﬁe;..h
&;-:;;o:-.-.-
S 5
2 e tasnes

B o
e e~

Predict masked portions of an image Jigsaw puzzle recovery of images
Jiang et.al MICCAI 2022 Taleb et.al TMI 2020

$ Memorial Sloan Kettering
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Foundation models approach

Self-supervised 3D Anatomy Segmentation Using Self-

distilled Masked Image Transformer (SMIT)

Jue Jiang, Neelam Tyagi, Kathryn Tringale, Christopher Crane & Harini Veeraraghavan

Conference paper ] First Online: 16 September 2022
1287 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13434)
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1) Self-supervised pre-
training with uncurated
3D CTs from The
Cancer Imaging
Archive and Internal

datasefts
Current model uses ~
10,000 3D CTs

2) Fine tune/transfer learn on
task specific datasets

Ealh Embedding

$ Memorial Sloan Kettering
Teha Cancer Center




Foundation models improve robustness to CT variations

u
B Swin.Scratch B Swin.Self B Swin.Pre

Recon 1 Recon 2 Recon 3

Standard reconstruction

Lung reconstruction

Scratch training

Foundation model

Convolutional Kernels

Memorial Sloan Kettering
i 1884 C Cent
Jiang and Veeraraghavan MIDL 2024 ancer Center



SMIT is transferable to multiple imaging modalities

» Fine-tuning SSL pretrained model is more accurate than supervised learning
alone

Manual Label MR|/ —Nigfuar™abel 0.9
/ W 0.8
>

41.'."" 30.7-

P a 0'6. t | »

‘L‘) 0.5] —— Train from Stratch

gl -S 04# NN Masnann —— Train use SMIT
MIT A

© 0.2
50 100 150 200

>
k. 0.0
. Epoch

Code + Model: https://github.com/harveerar/SMIT

Memorial Sloan Kettering
Jiang, ... Veeraraghavan et.al MICCAI 2022 izbs/ Cancer Center



Auto-segmentation of neck nodal metastases using
self-distilled masked image transformer on

longitudinal MR images

Ramesh Paudyal, PhD, Jue Jiang, PhD, James Han, MD, Bill H Diplas, MD,

Nadeem Riaz, MD, Vaios Hatzoglou, MD, Nancy Lee, MD, Joseph O Deasy, PhD,
Harini Veeraraghavan, PhD ™, Amita Shukla-Dave, PhD ™=

1.00- 7}
IO §
8
O 3
o 050-
0
) 9K -
U.23 g
s
®
o
0.00-
| | ) |
0 1 2 3
Weeks Week #0 Week #1 Week #2 Week #3

SMIT shows capability to track nodal metastases changes from MRI

$ Memorial Sloan Kettering
Teha Cancer Center



SMIT can be applied in few-shot settings

» Models show capability for few shot training

0.9
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CT Lung tumor

Jiang, ... Veeraraghavan in submission

0.9
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0.7
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0.41
0.3
0.21

0.11

—_

3

5

10
MRI Lung tumor

20

Pretrained model using 10,000 3D CT from TCIA and institutional
cases from cancer and non-cancer images

1884
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Image Foundation models used in MSK Al

Rectal cancer MRI

* “One model to segment them

all” approach simplifies clinical ST ——
implementation and e, & Th ™
maintenance @ @

* Clinical models at MSK using
foundation models used for
thorax, abdomen/pelvis, and
brain

Self-supervised 3D Anatomy Segmentation Using Self-
distilled Masked Image Transformer (SMIT)

Jue Jiang, Neelam Tyagi, Kathryn Tringale, Christopher Crane & Harini Veeraraghavan

AR e 4
. | Prostate Cancer
A | ADC MRI

Conference paper ] First Online: 16 September 2022
1287 Accesses

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13434) - ‘ ¥




pYCERR library of Al segmentation models

Image modality Site Network architecture Segmented Structures Jupyter notebook

Planning CT |Lung Deeplab (V3+) Aorta, SVC, IVC, PA, LA, LV, RA, RV,

Axial atria, ventricles, and pericardium

Planning CT  |Lung Incremental MRRN Right lung, left lung, heart,

Axial esophagus, cord, PBT

Planning T2w |Prostate [Deeplab CTV, bladder, penile bulb, rectum,

MR Axial urethra foley, rectal spacer, large
bowel

Planning CT  [Lung SMIT Lung tumor

Axial

Planning T2w [Pancreas |ProRSeg Liver, large bowel , small bowel,

MR Axial https://doi.org/10.1002/mp.16527 duo-stomach

(longitudinal) _ _
Deformable vector field (first to
last scan)

Planning CT |Head and |Nested Block Self Attention Left parotid, right parotid, left

Axial neck submandibular gland, right

Deeplab (V3+)

submandibular gland, mandible,
spinal cord, brain stem, oral cavity

>

1884
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https://doi.org/10.1016/j.phro.2020.05.009
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Heart_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Heart_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Heart_OARs.ipynb
doi.org/10.48550/arXiv.2005.13690
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_OARs.ipynb
https://doi.org/10.1016/j.phro.2019.11.006
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_MR_Prostate_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_MR_Prostate_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_MR_Prostate_OARs.ipynb
https://doi.org/10.48550/arXiv.2205.10342
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_SMIT.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_SMIT.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_SMIT.ipynb
https://doi.org/10.1002/mp.16527
https://github.com/cerr/pyCERR-Notebooks/blob/main/auto_register_segment_MR_Pancreas_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/auto_register_segment_MR_Pancreas_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/auto_register_segment_MR_Pancreas_OARs.ipynb
https://doi.org/10.48550/arXiv.1909.05054
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