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Use of AI in radiotherapy
Pubmed search for papers “AI + radiotherapy”
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Convolutional 
architecture to 
process 2D  
medical images



Image 
reconstruction Dose 

accumulation

Dose prediction

AI is applicable in almost every aspect of radiotherapy

Outcomes/Toxicity 
prediction



Clinical implementation of deep learning at MSK

1998

LeNet
2015 20192012

AlexNet
MR guided 
prostate cancer

UNet



Challenges for clinical implementation
Expectation

AI model Development

Training Validation
Optimize 
parameters

Select hyper-
parameters

Testing
Data released 
after model 
building

Prevents data leakage and ensures 
validity of model results 

Reality due to data limitations

AI model Development

Training + Validation

Training + Validation + Testing

Testing

Requires nested cross 
validation to avoid data leak; 
Results are sub-optimal



Challenges for clinical implementation

Expectation

AI model

In distribution data 
(ID) is used

Reality

AI model

Clinical test data 
resembles training 
data

Some data is ID, a lot of it is out 
of distribution (OOD)

Covariate shift due 
to data distribution 
differences

Concept shift due 
to pathological 
differences



Clinical Implementation Challenges: Covariate shift
AI model

(Intra-prostatic lesion)

Differences in Apparent diffusion coefficient distributions of 1,277 prostate cancers taken 
from four different testing datasets 

Training + Validation

1.5 Tesla GE with 
endorectal coil test

Simeth … Veeraraghavan et.al

1.5 Tesla Phillips test

OODID

3.0 Tesla Phillips test

OOD

3.0 Tesla Siemens 
test

OOD



Clinical Implementation Challenges: Concept drift

AI model

Training: Stage I – III non-small 
cell lung cancer

Testing: Pre & non-cancerous lesions
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Clinical Implementation Challenges: Concept drift

AI model

Training: Stage I – III non-
small cell lung cancer

Testing: Non cancers

AI model

Training: normal 
anatomy

Testing: Abnormal 
anatomy

Training: Incomplete 
segmentations

AI model

Testing: Complete segmentations



Increasing trustworthiness of AI models in clinic

AI modelTraining Clinical 
Deployment

Concept Drift: 
Different disease; 

abnormal 
anatomy;

Different output

Covariate shift: 
Different 

distribution; 
Contrast 

differences;..

Solutions: 
Ø Maximally use labeled data

Ø Increase data diversity 
through domain adaptation 

Ø Assess performance drifts

Online and routine Quality Assurance



Improving robustness of AI models

Image representation is key to good segmentation



“Learning” is about extracting useful features

Model training should focus on extracting features that robustly 
differentiate foreground (structure/organ of interest) from background



“Learning” is about extracting useful features

Ø Increase training data variability
Ø Regularize training to extract “useful” features



Extract a richer feature representation by combining 
residual and dense connections in a deep network

Siemens 3 Tesla

GE 1.5 Tesla

Phillips 3 Tesla



Improving segmentation accuracy on OOD data

Unet UnetMRRN MRRN

Phillips 3 Tesla Siemens 3 Tesla
Extracting a richer feature representation by combining residual connections 
and dense features increases capability to handle data variations in MRRN



Implicit feature augmentation with mixup to further 
regularize network training

MRRN with Parallel Coherent mixup (Parc-mix)

MRRN

Simeth, … Veeraraghavan



Improved regularization leads to better generalization 
across scanners

Analysis: Josiah Simeth, PhD
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Using domain adaptation for increasing data variability

Jiang J, .. Deasy J, Veeraraghavan H 2018

CT Image

Cycle GAN UNIT GAN

Generated MRI

Comparison methods

Our approach

Tumor-aware

Good constraints are required to ensure preservation of structures like tumors



Cross domain adaptation for improving segmentation

Uses high soft-tissue contrast in MRI to improve cone beam CT segmentation



Cross modality distillation to learn “better” features

Problem: Features extracted directly from CT cannot sufficiently 
discriminate tumor from background



CROSS-
MODALITY 

MODEL

FEATURE 
DISTILLATION

CBCT 
SEGMENTOR

MRI SEGMENTOR

Leverage MRI to regularize CBCT network and 
extract “relevant” features

Ø Practical no need for paired multi-
modality datasets

Ø Efficient only needs the CBCT 
network for testing

Ø Accurate because errors in 
synthesis do not propagate at 
testing



Why does CMEDL regularization work? 

Cross modality distillation forces network to learn features signaling 
contrast between foreground and background

CBCT 
Segmentor 

3DUnet

CMEDL CBCT 
3DUnet



Does CMEDL improve accuracy? 

CBCT using 3D Unet
Algorithm
Expert

CBCT using CMEDL 3D Unet



Does CMEDL really work? 

CBCT 3D Unet CBCT CMEDL 3D Unet 

Results from mix of public and internal 38 test cases



Patient specific segmentation combining registration





Models also need to be trustworthy to 
ensure Fair and Uninterrupted 
treatments



Multiple dimensions of trustworthiness

Ø Prespecified methods to update and 
evaluate models
Ø Commissioning testing and testing 

data used for updates

Change control plan



Deploying AI models in clinic

AI model(s)
Lifecycle

Commissioning 
testing

AI model 
training

Clinical 
feedback 

Clinical 
deployment

Routine 
QA

Clinical 
feedback Data assembly

(Clinically edited datasets 
used to increase data size)

Not passed
Clinician or anatomist 

or low accuracy on 
challenge cases

ØDefined metrics for success
ØStandardized development and testing 

pipeline
ØCommissioning testing sets separate 

from training & validation + ”challenge” 
cases from prospectively scanned cases

ØOnline Quality assessment
ØInvolve various stakeholders in the 

development, testing, and 
commissioning process
Ø radiation oncologists, physicists, 

computer scientists, anatomists, 
radiologists 



Multiple dimensions of trustworthiness

Ø Resilience to data variations and 
drifts

Ø Reduced bias to under-represented 
populations

Robustness and Fairness



Analyzing robustness of AI model to concept drift

Swin UNETR SMIT
In distribution

Lung Phantom

Swin UNETR SMIT

TCIA test data COVID-19

Out of distribution

Pulmonary Embolism

Rangnekar, ... Veeraraghavan In submission. 



Quantifying performance drifts is essential to make 
improvements

Lung reconstruction Smooth reconstruction Non-contrast Phantom

§ Same model can result in performance variations with changes in images even from 
same patient

§ Models need to assessed not only for accuracy but also for performance drifts when 
employed in continuous clinical use

Jiang, Rangnekar, Veeraraghavan 



Standard metrics may be insufficient to detect drifts

Accuracy metrics show similar performance of two different networks

Rangnekar, … Veeraraghavan https://arxiv.org/abs/2403.13113 



Accuracy metrics to identify performance drift

Data AUROC FPR @ 95
COVID-19 lung 
CT

89.85 % 34.62

Abdomen CT 99.02 % 5.77

§ AUROC measures the accuracy of correctly detecting the lung tumors when they occur 
and not detecting other lesions as lung tumors

§ FPR @ 95 or False positive rate at 95% measures the probability that a negative (out-
of-distribution) example or non-lung tumor is segmented as positive (or in-distribution) 
lung tumor with a True Positive Rate as high as 95%

Rangnekar.. Veeraraghavan 2024, https://arxiv.org/abs/2403.13113 

Abdomen CTCOVID-19 Chest CT



Differences emerge when analyzing OOD performance
Model Dataset AUROC FPR @ 95

Swin 
UNETR

COVID-19 89.19 % 34.62

SMIT COVID-19 89.85 % 34.62

Swin 
UNETR

Abdomen CT 82.39 % 38.46

SMIT Abdomen CT 99.02 % 5.77

Abdomen CTCOVID-19 Chest CT



Increasing robustness to image variations

Medical foundation models or large pretrained models could allow to solve a 
wide range of tasks by accelerating the development of accurate models, while 
reducing need for large amounts of labeled training data



Self-supervised learning background

• Machine learning approach that uses unsupervised learning 
for tasks that conventionally require supervised learning

– Instead of relying on supervised labels, generate implicit labels from 
unstructured data

– Can be more time efficient and effective for massive datasets
– Tasks are designed such that loss function can use unlabeled data 

as “ground truth” to extract meaningful representations
– Pretext tasks yield pseudo labels

Predict masked portions of an image 
Jiang et.al MICCAI 2022

Jigsaw puzzle recovery of images
Taleb et.al TMI 2020



Foundation models approach

2) Fine tune/transfer learn on 
task specific datasets

1) Self-supervised pre-
training with uncurated 
3D CTs from The 
Cancer Imaging 
Archive and Internal 
datasets

Ø Current model uses ~ 
10,000 3D CTs



Foundation models improve robustness to CT variations
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Lung reconstruction Standard reconstruction

Jiang and Veeraraghavan MIDL 2024



SMIT is transferable to multiple imaging modalities
Ø Fine-tuning SSL pretrained model is more accurate than supervised learning 

alone
 

Jiang, … Veeraraghavan et.al MICCAI 2022

Code + Model: https://github.com/harveerar/SMIT



OPPORTUNITIES FOR LONGITUDINAL AI

SMIT shows capability to track nodal metastases changes from MRI



SMIT can be applied in few-shot settings
Ø Models show capability for few shot training 

Jiang, … Veeraraghavan in submission

Pretrained model using 10,000 3D CT from TCIA and institutional 
cases from cancer and non-cancer images



Image Foundation models used in MSK AI

Prostate Cancer 
ADC MRI

H&N lymph node 
T2w MRI

Ovarian metastases CT

Lung tumor T2w MRI

Lung tumor CT

Rectal cancer MRI• “One model to segment them 
all” approach simplifies clinical 
implementation and 
maintenance

• Clinical models at MSK using 
foundation models used for 
thorax, abdomen/pelvis, and 
brain



Image modality Site Network architecture Segmented Structures Jupyter notebook

Planning CT
Axial

Lung DeepLab (V3+)
https://doi.org/10.1016/j.phro.2020.05.009

Aorta, SVC, IVC, PA, LA, LV, RA, RV, 
atria, ventricles, and pericardium

https://github.com/cerr/pyCERR-
Notebooks/blob/main/autosegment_CT
_Heart_OARs.ipynb

Planning CT
Axial

Lung Incremental MRRN
doi.org/10.48550/arXiv.2005.13690

Right lung, left lung, heart, 
esophagus, cord, PBT

https://github.com/cerr/pyCERR-
Notebooks/blob/main/autosegment_CT
_Lung_OARs.ipynb

Planning T2w 
MR Axial

Prostate DeepLab
https://doi.org/10.1016/j.phro.2019.11.006

CTV, bladder, penile bulb, rectum, 
urethra foley, rectal spacer, large 
bowel

https://github.com/cerr/pyCERR-
Notebooks/blob/main/autosegment_MR
_Prostate_OARs.ipynb

Planning CT
Axial

Lung SMIT
https://doi.org/10.48550/arXiv.2205.10342

Lung tumor https://github.com/cerr/pyCERR-
Notebooks/blob/main/autosegment_CT
_Lung_SMIT.ipynb

Planning T2w 
MR Axial 
(longitudinal)

Pancreas ProRSeg
https://doi.org/10.1002/mp.16527

Liver, large bowel , small bowel, 
duo-stomach

Deformable vector field (first to 
last scan)

https://github.com/cerr/pyCERR-
Notebooks/blob/main/auto_register_seg
ment_MR_Pancreas_OARs.ipynb

Planning CT
Axial

Head and 
neck

Nested Block Self Attention
https://doi.org/10.48550/arXiv.1909.05054
DeepLab (V3+)
https://doi.org/10.1088/1361-6560/ac4000

Left parotid, right parotid, left 
submandibular gland, right 
submandibular gland, mandible, 
spinal cord, brain stem, oral cavity

pyCERR library of AI segmentation models

https://doi.org/10.1016/j.phro.2020.05.009
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Heart_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Heart_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Heart_OARs.ipynb
doi.org/10.48550/arXiv.2005.13690
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_OARs.ipynb
https://doi.org/10.1016/j.phro.2019.11.006
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_MR_Prostate_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_MR_Prostate_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_MR_Prostate_OARs.ipynb
https://doi.org/10.48550/arXiv.2205.10342
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_SMIT.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_SMIT.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_SMIT.ipynb
https://doi.org/10.1002/mp.16527
https://github.com/cerr/pyCERR-Notebooks/blob/main/auto_register_segment_MR_Pancreas_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/auto_register_segment_MR_Pancreas_OARs.ipynb
https://github.com/cerr/pyCERR-Notebooks/blob/main/auto_register_segment_MR_Pancreas_OARs.ipynb
https://doi.org/10.48550/arXiv.1909.05054
https://doi.org/10.48550/arXiv.1909.05054
10.1088/1361-6560/ac4000


AI GUIDED RT (AIGRT) IS THE FUTURE 

AI guided radiation treatment (AIGRT)

HERE


