

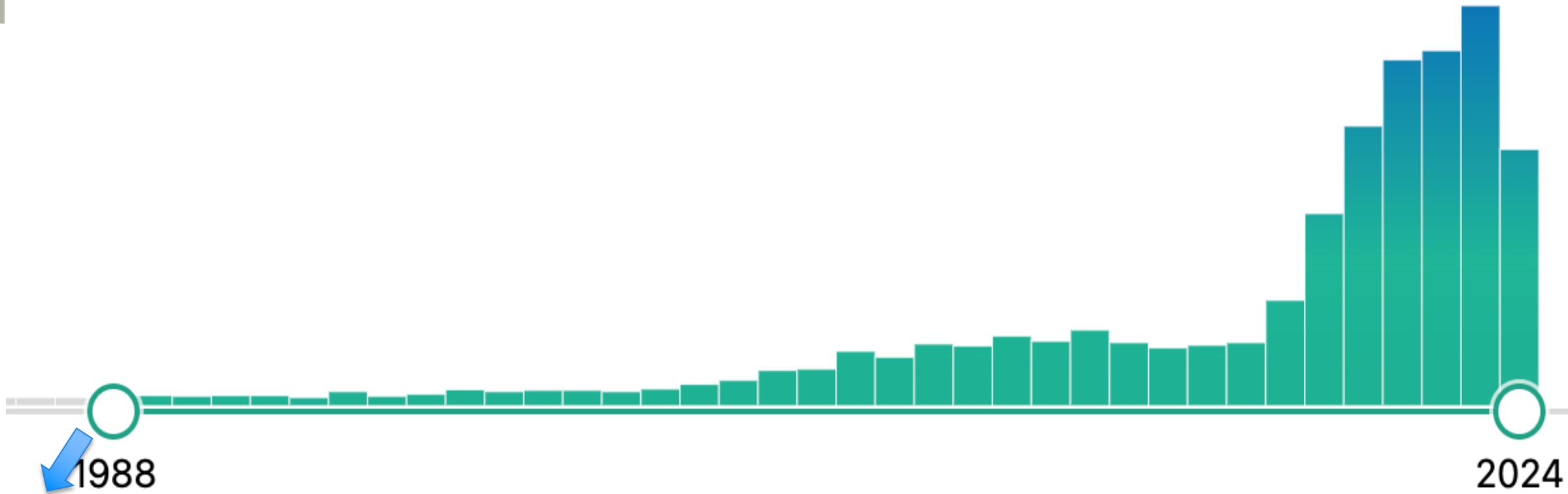
Memorial Sloan Kettering
Cancer Center

Developing and deploying trustworthy AI models for cancer treatments

Harini Veeraraghavan, PhD
Director, AI for Image Guided Therapies
Associate Attending Computer Scientist
Memorial Sloan Kettering Cancer Center

Use of AI in radiotherapy

Pubmed search for papers “AI + radiotherapy”



Applications of data bases and AI/expert systems in radiation therapy.

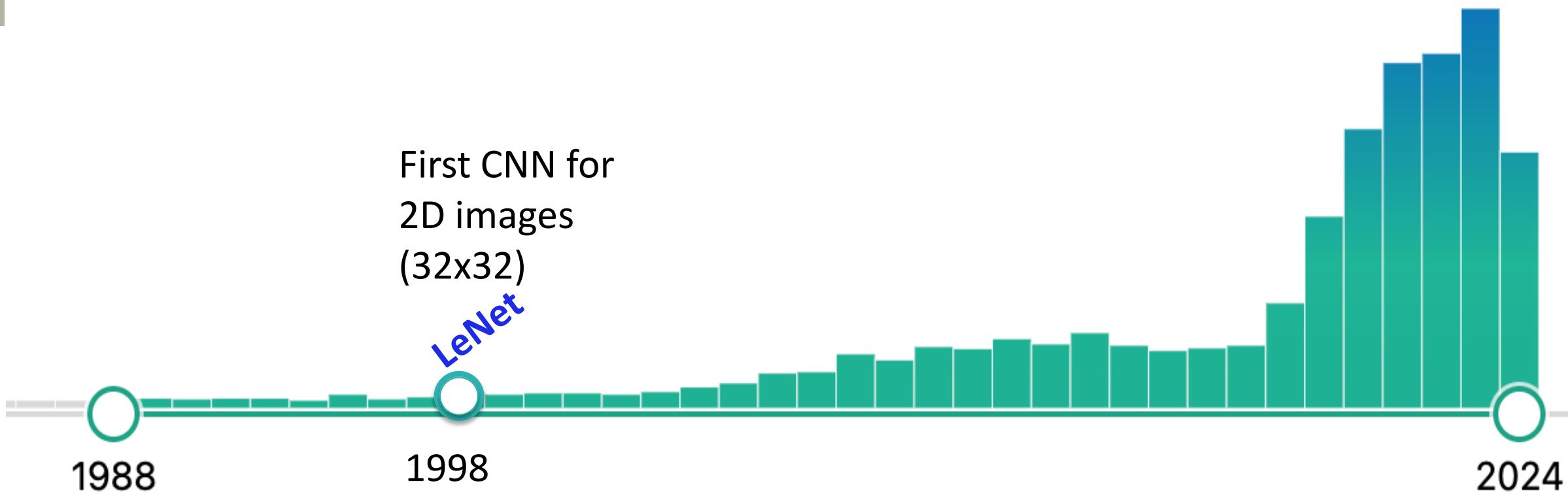
Laramore GE, Altschuler MD, Banks G, Kalet IJ, Pajak TF, Schultheiss TE, Zink S.

Am J Clin Oncol. 1988 Jun;11(3):387-93. doi: 10.1097/00000421-198806000-00015.

PMID: 3289369 Review. No abstract available.

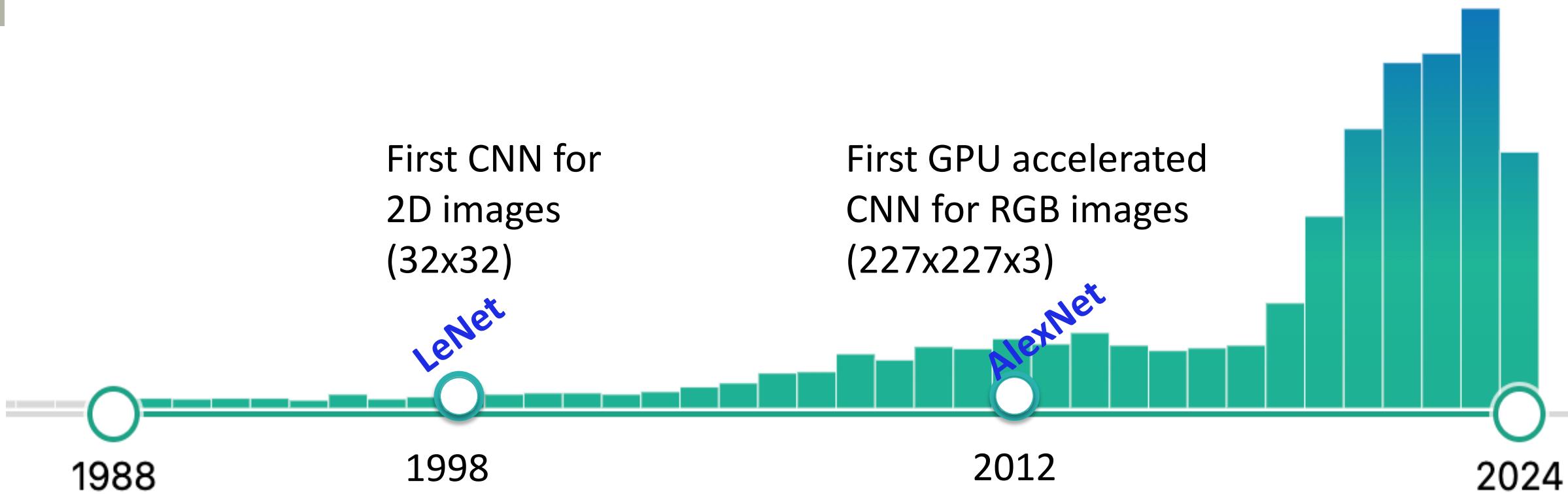
Memorial Sloan Kettering
Cancer Center

Key innovations in deep learning



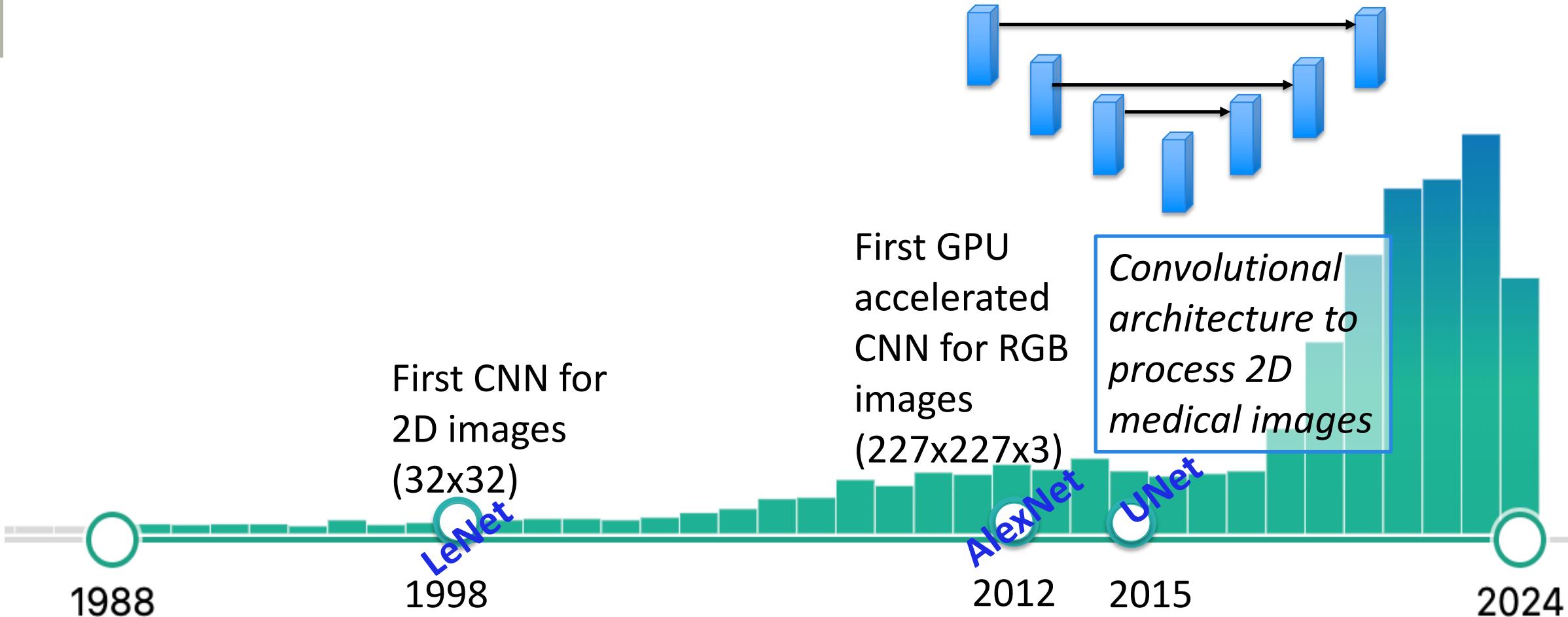
Memorial Sloan Kettering
Cancer Center

Key innovations in deep learning



Memorial Sloan Kettering
Cancer Center

Key innovations in deep learning



Memorial Sloan Kettering
Cancer Center

AI is applicable in almost every aspect of radiotherapy

Contents lists available at ScienceDirect

Radiotherapy and Oncology

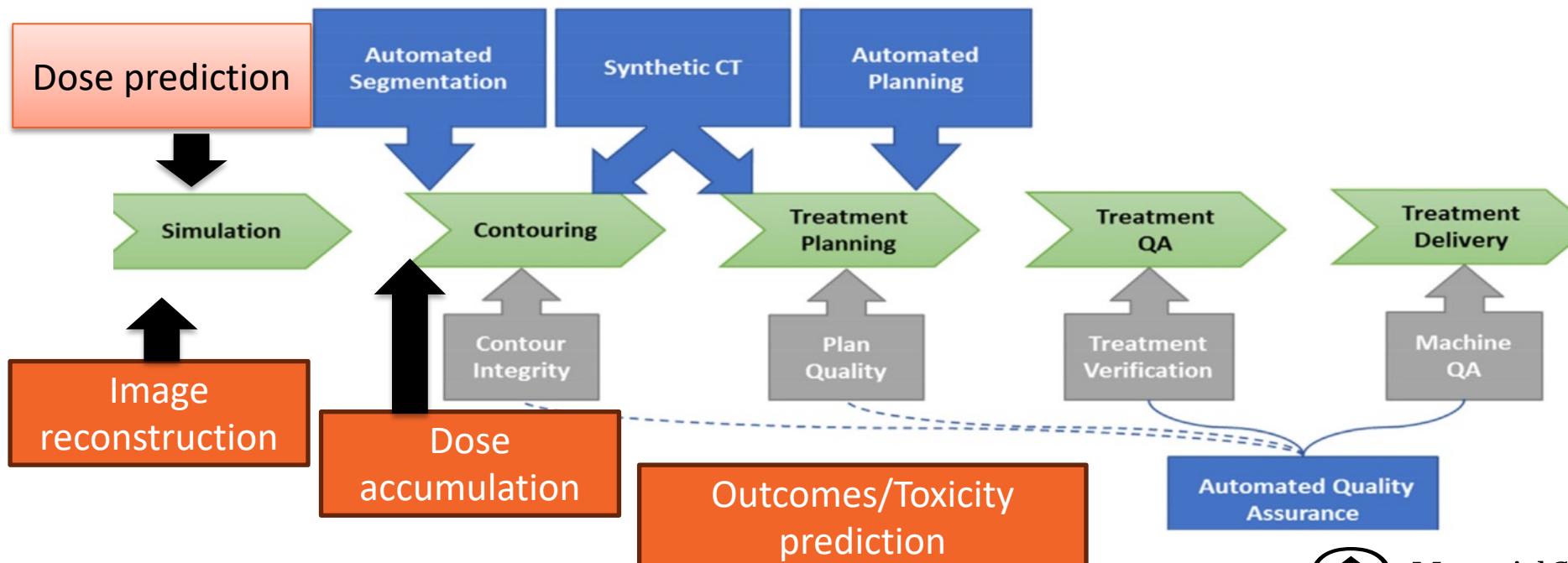
journal homepage: www.thegreenjournal.com

Review Article

Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance

Liesbeth Vandewincke ^{a,b,1}, Michaël Claessens ^{c,d,1}, Anna Dinkla ^{e,1,*}, Charlotte Brouwer ^f, Wouter Crijns ^{a,b}, Dirk Verellen ^{c,d}, Wouter van Elmpt ^g

^aDepartment Oncology, Laboratory of Experimental Radiotherapy, KU Leuven; ^bDepartment of Radiation Oncology, UZ Leuven; ^cFaculty of Medicine and Health Sciences, University of Antwerp; ^dDepartment of Radiation Oncology, Iridium Cancer Network, Wilrijk (Antwerp); ^eDepartment of Radiation Oncology, Amsterdam University Medical Center, University of Amsterdam; ^fUniversity of Groningen, University Medical Center Groningen, Department of Radiation Oncology; and ^gDepartment of Radiation Oncology (Mastro), GROW School for Oncology, Maastricht University Medical Centre+



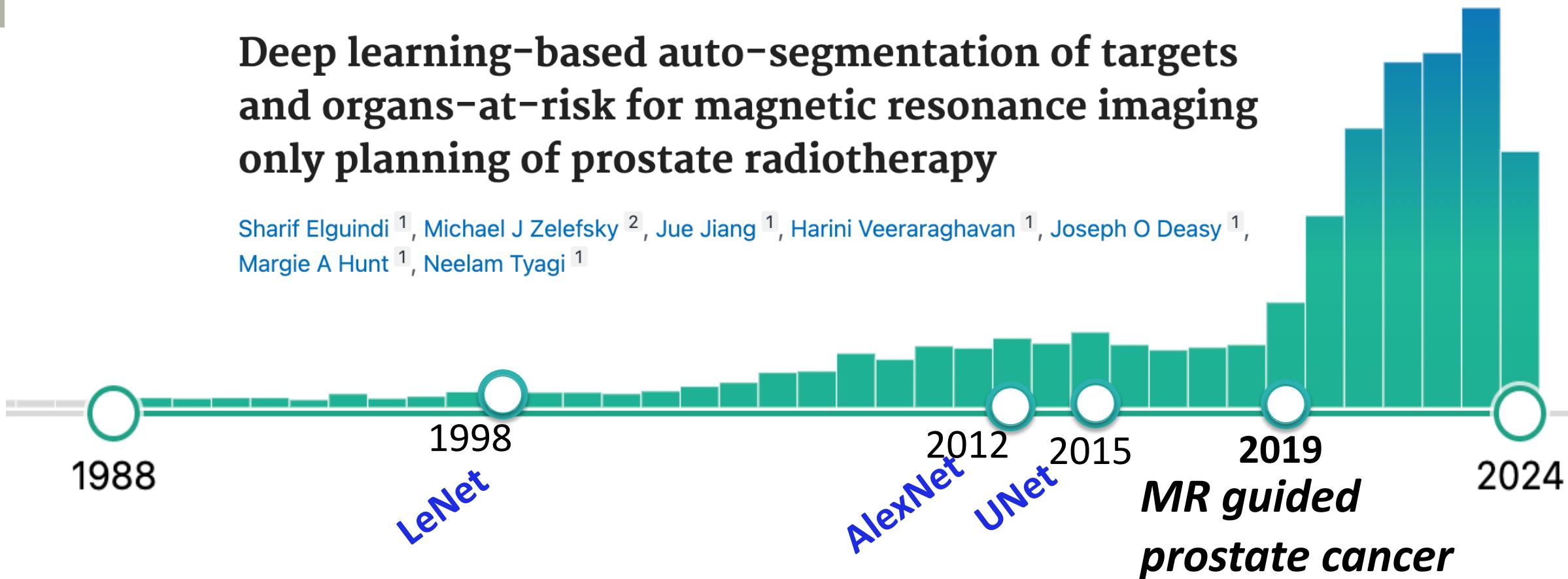
Memorial Sloan Kettering Cancer Center

Clinical implementation of deep learning at MSK

> Phys Imaging Radiat Oncol. 2019 Oct;12:80-86. doi: 10.1016/j.phro.2019.11.006.
Epub 2019 Dec 12.

Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy

Sharif Elguindi ¹, Michael J Zelefsky ², Jue Jiang ¹, Harini Veeraraghavan ¹, Joseph O Deasy ¹,
Margie A Hunt ¹, Neelam Tyagi ¹



Memorial Sloan Kettering
Cancer Center

Challenges for clinical implementation

Expectation

AI model Development

Training

Optimize parameters

Validation

Select hyper-parameters

Data released after model building

Prevents data leakage and ensures validity of model results

Reality due to data limitations

AI model Development

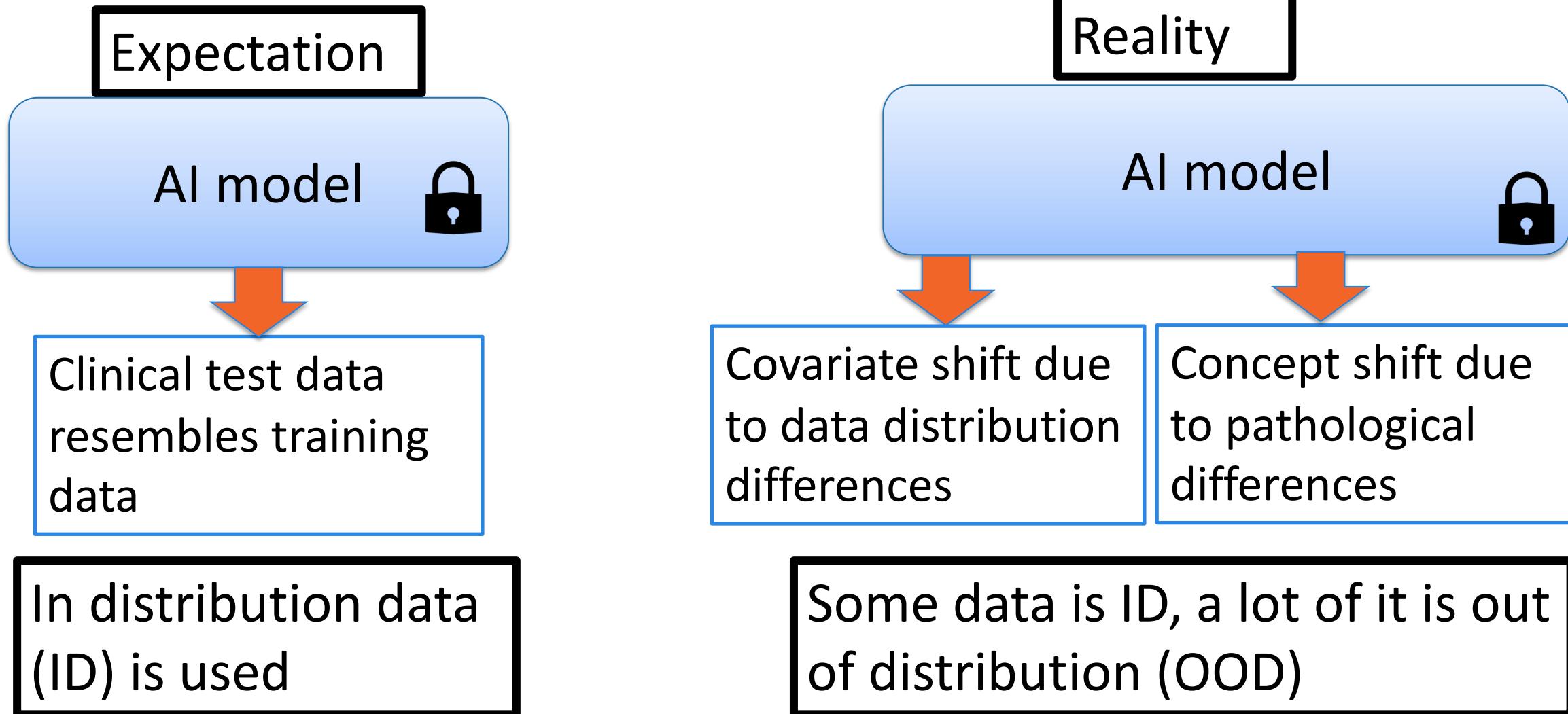
Training + Validation

Training + Validation + Testing

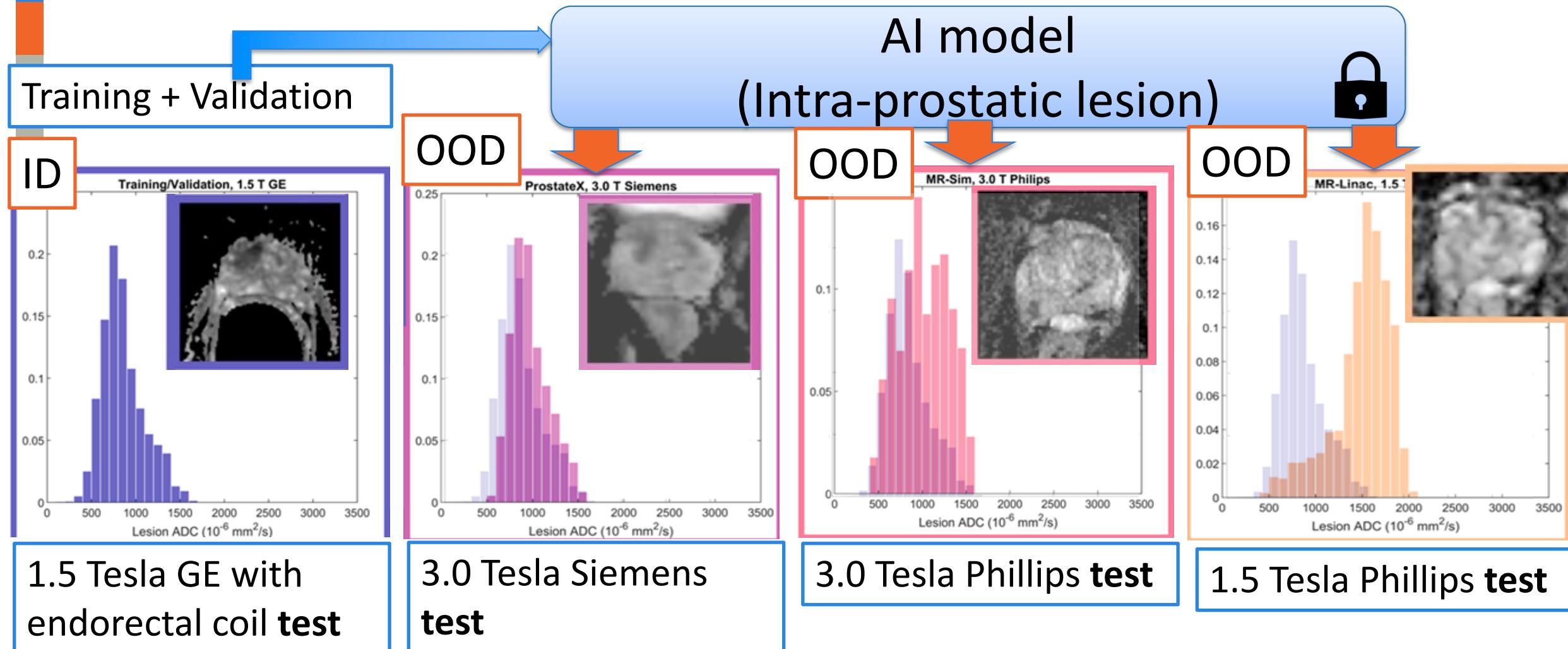
Requires nested cross validation to avoid data leak;
Results are sub-optimal

Memorial Sloan Kettering
Cancer Center

Challenges for clinical implementation



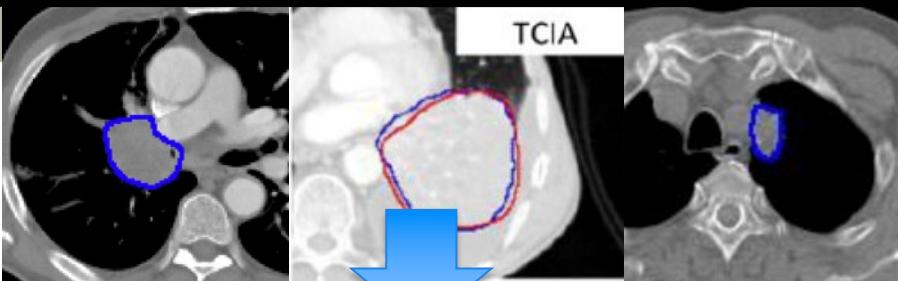
Clinical Implementation Challenges: Covariate shift



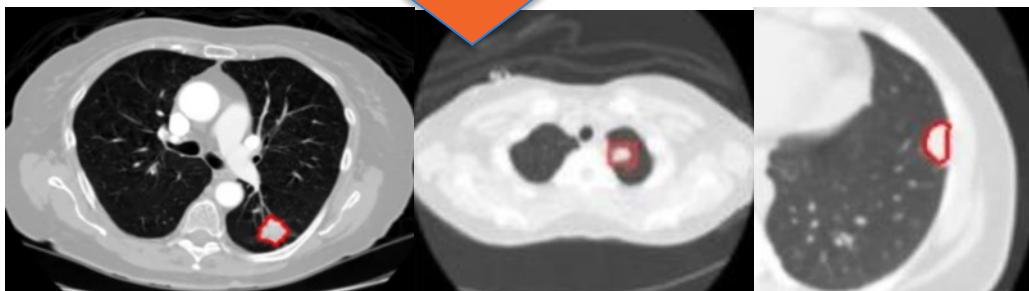
Differences in Apparent diffusion coefficient distributions of 1,277 prostate cancers taken from four different testing datasets

Clinical Implementation Challenges: Concept drift

Training: Stage I – III non-small cell lung cancer



AI model

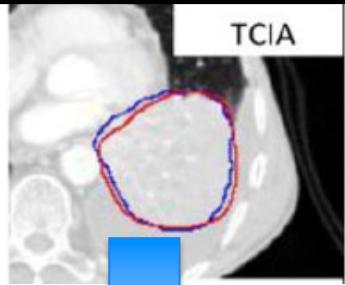


Testing: Pre & non-cancerous lesions

Memorial Sloan Kettering
Cancer Center

Clinical Implementation Challenges: Concept drift

Training: Stage I – III non-small cell lung cancer

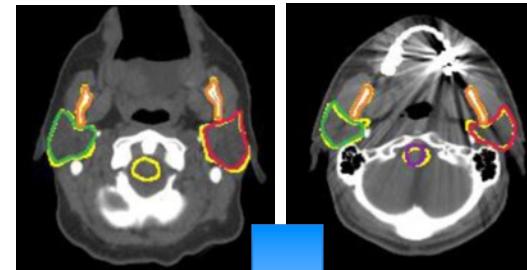


AI model

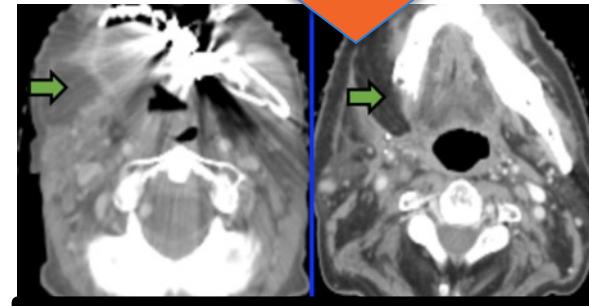


Testing: Pre & non-cancerous lesions

Training: normal anatomy



AI model

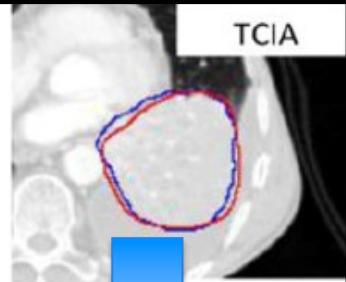


Testing: Abnormal anatomy

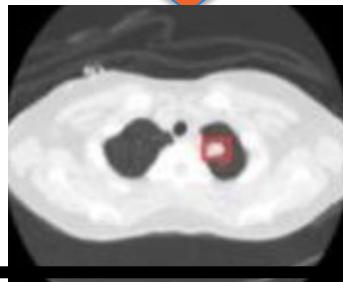
Memorial Sloan Kettering
Cancer Center

Clinical Implementation Challenges: Concept drift

Training: Stage I – III non-small cell lung cancer

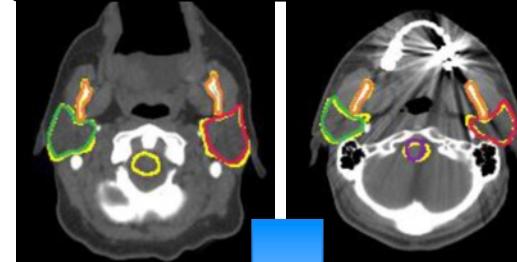


AI model

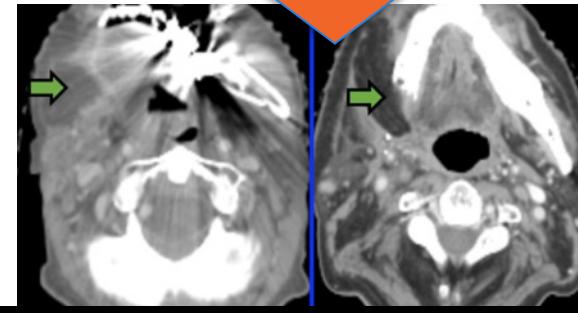


Testing: Non cancers

Training: normal anatomy

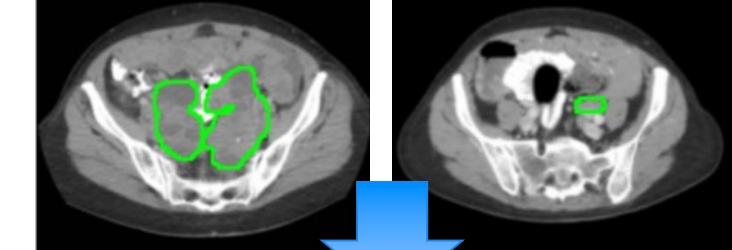


AI model

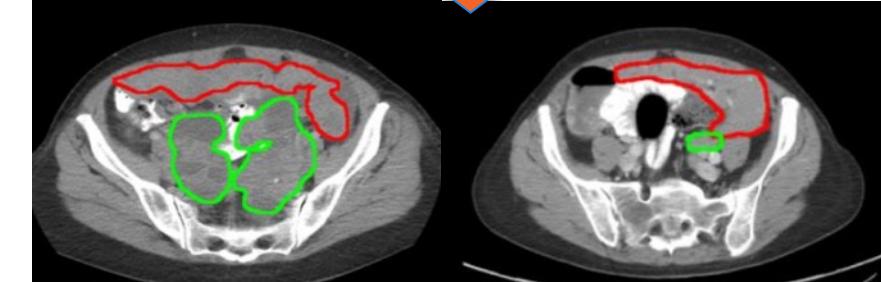


Testing: Abnormal anatomy

Training: Incomplete segmentations



AI model

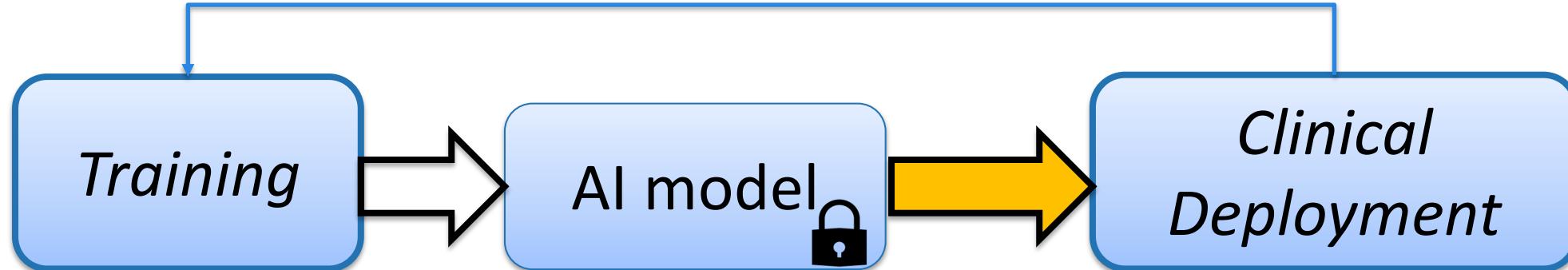


Testing: Complete segmentations

Memorial Sloan Kettering
Cancer Center

Increasing trustworthiness of AI models in clinic

Online and routine Quality Assurance



Concept Drift:
Different disease;
abnormal
anatomy;
Different output

Solutions:

- Maximally use labeled data
- Increase data diversity through domain adaptation
- Assess performance drifts

Covariate shift:
Different
distribution;
Contrast
differences;..

Improving robustness of AI models

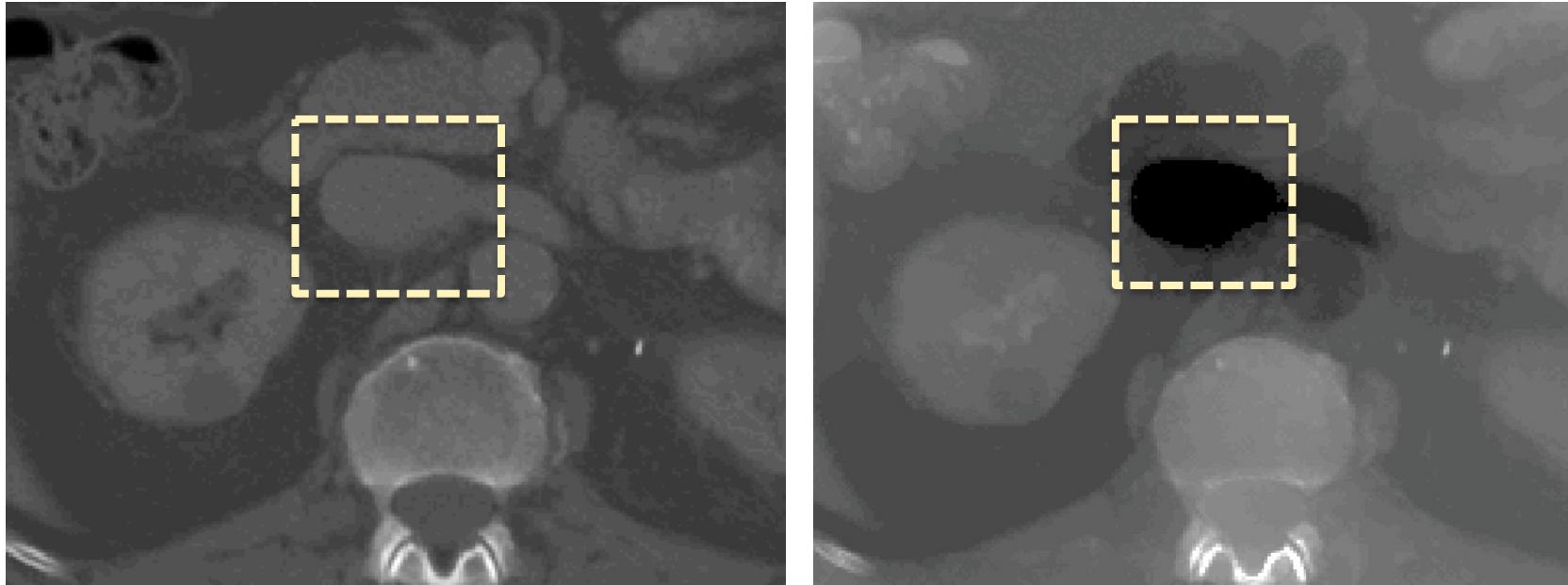
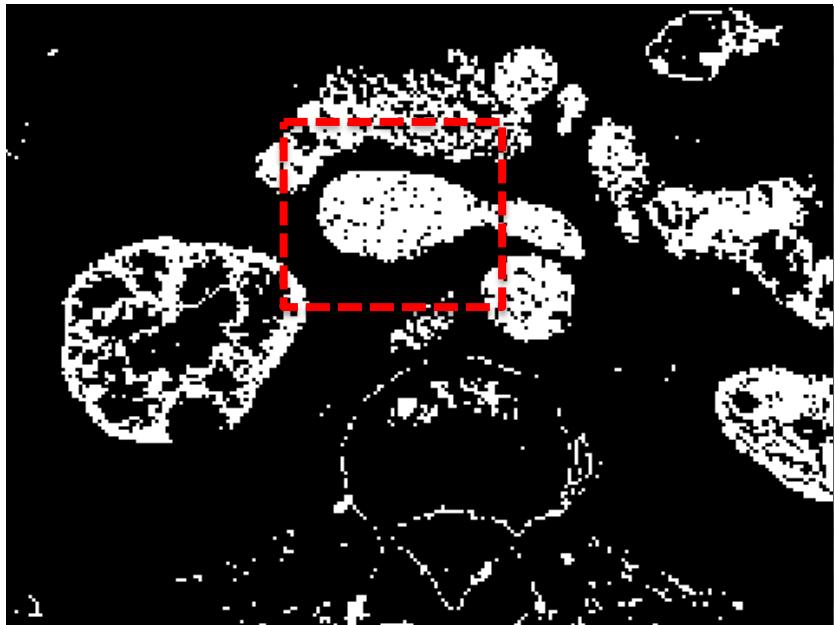
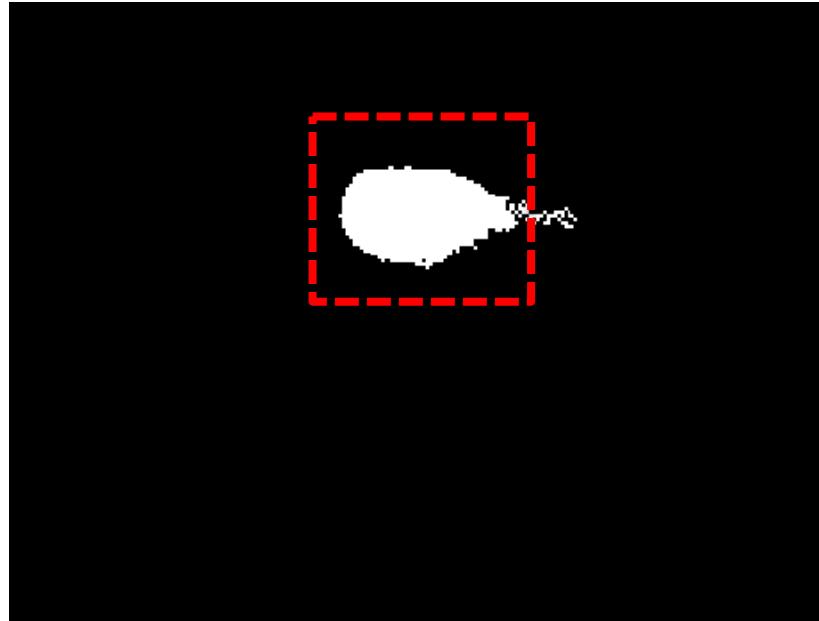


Image representation is key to good segmentation

Memorial Sloan Kettering
Cancer Center

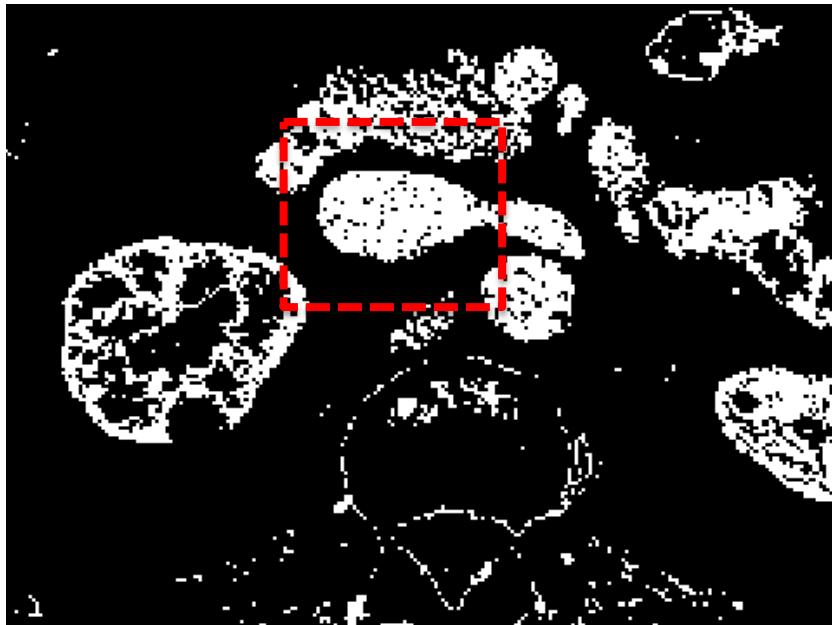
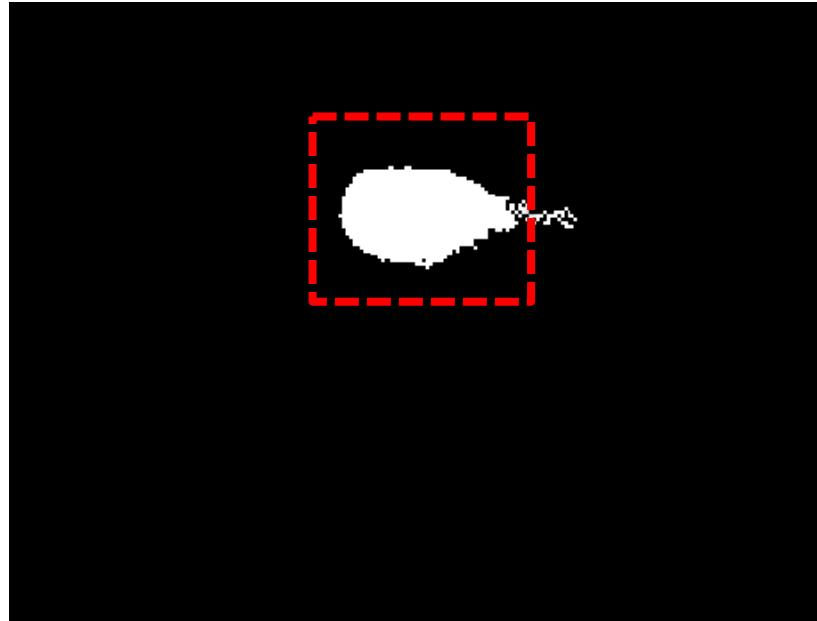
“Learning” is about extracting useful features



Model training should focus on extracting features that robustly differentiate foreground (structure/organ of interest) from background

Memorial Sloan Kettering
Cancer Center

“Learning” is about extracting useful features

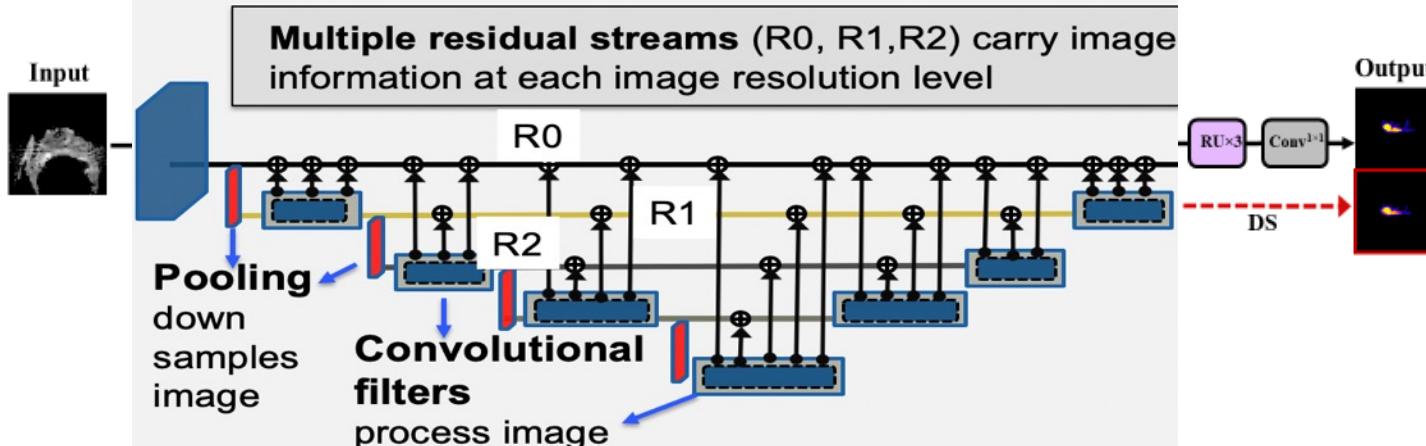


- *Increase training data variability*
- *Regularize training to extract “useful” features*

Memorial Sloan Kettering
Cancer Center

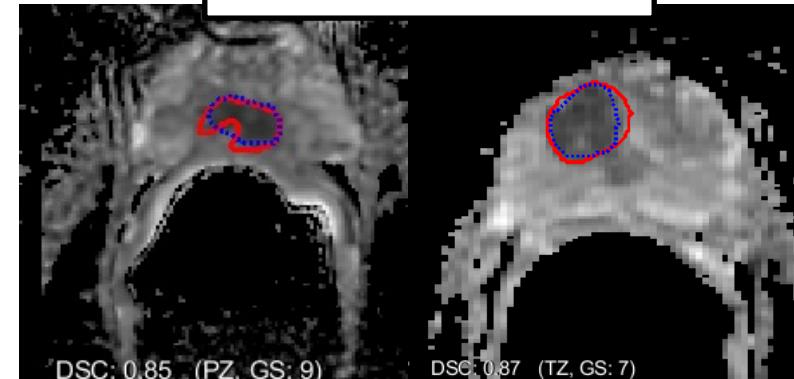
Deep learning-based dominant index lesion segmentation for MR-guided radiation therapy of prostate cancer

Josiah Simeth ¹, Jue Jiang ¹, Anton Nosov ², Andreas Wibmer ², Michael Zelefsky ³,
Neelam Tyagi ¹, Harini Veeraraghavan ¹

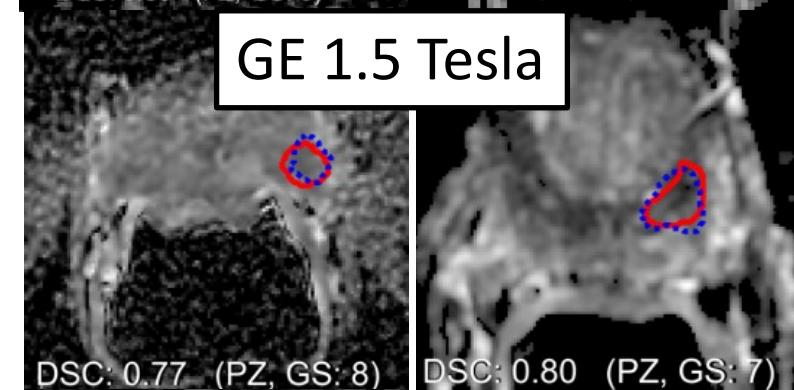


Extract a richer feature representation by combining residual and dense connections in a deep network

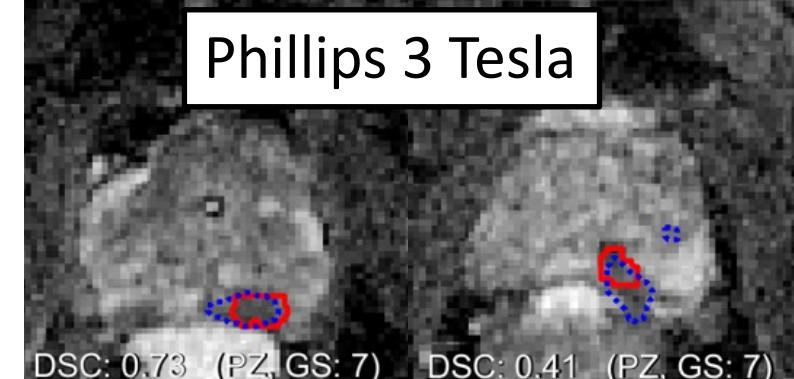
Siemens 3 Tesla



GE 1.5 Tesla



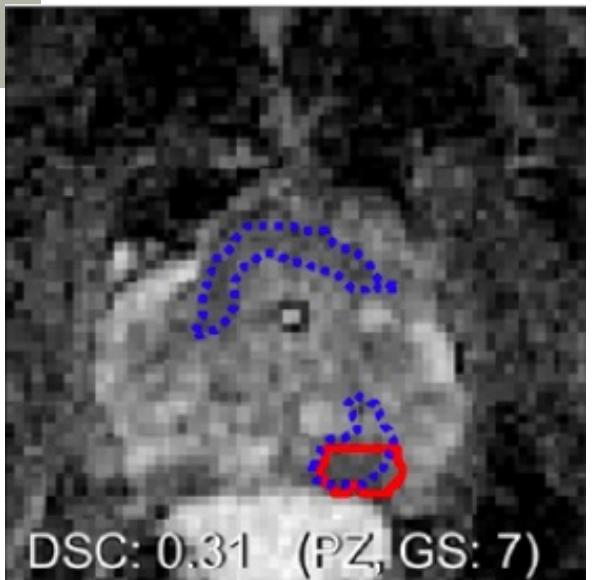
Phillips 3 Tesla



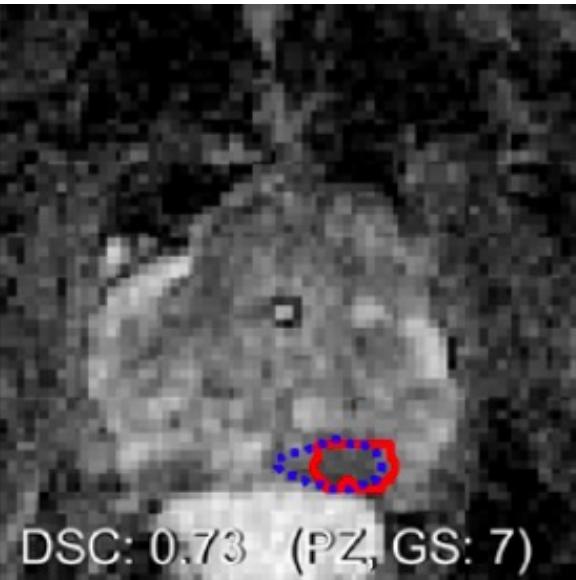
Memorial Sloan Kettering
Cancer Center

Improving segmentation accuracy on OOD data

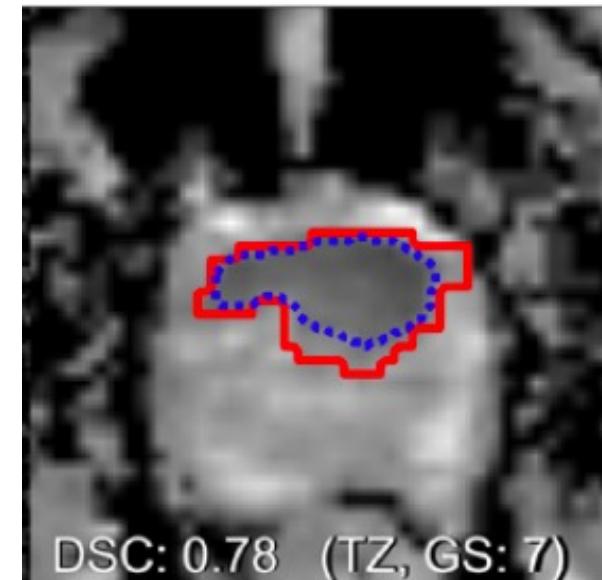
Unet



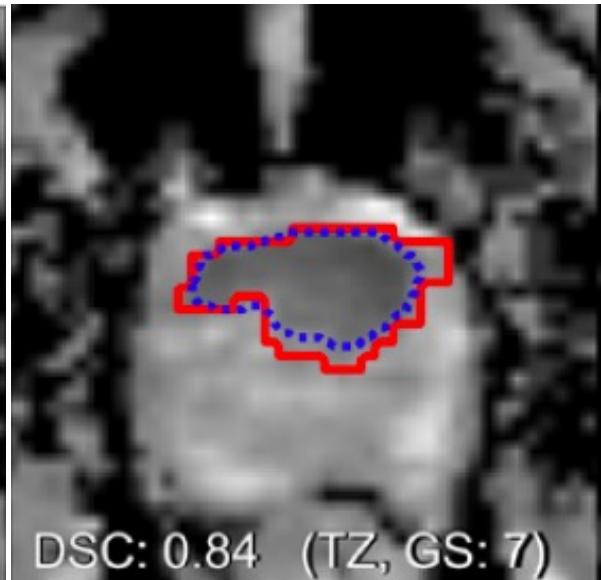
MRRN



Unet



MRRN



Phillips 3 Tesla

Siemens 3 Tesla

Extracting a richer feature representation by combining residual connections and dense features increases capability to handle data variations in MRRN

Memorial Sloan Kettering
Cancer Center

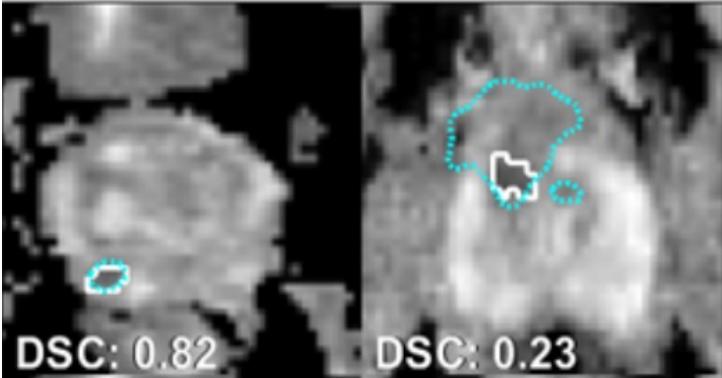
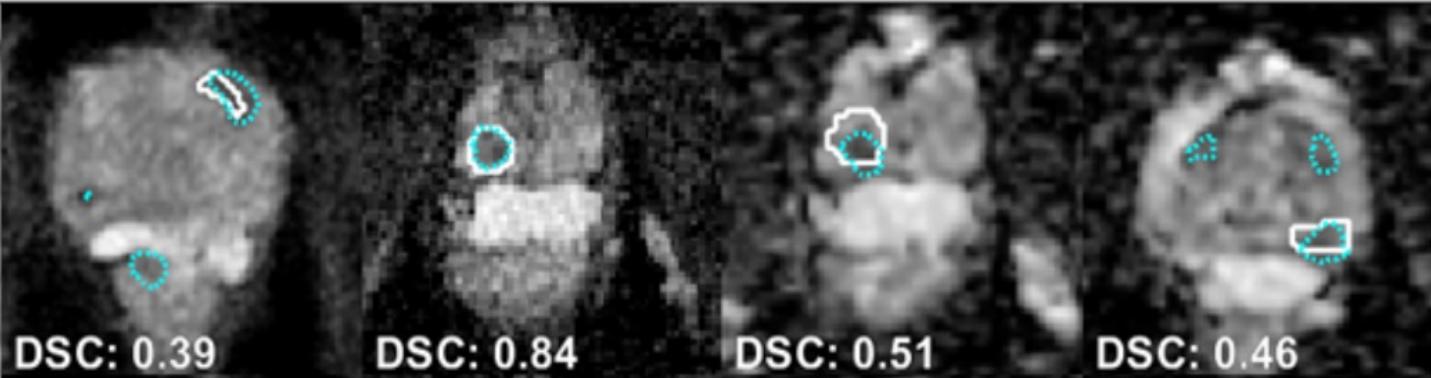
Implicit feature augmentation with mixup to further regularize network training

MRRN

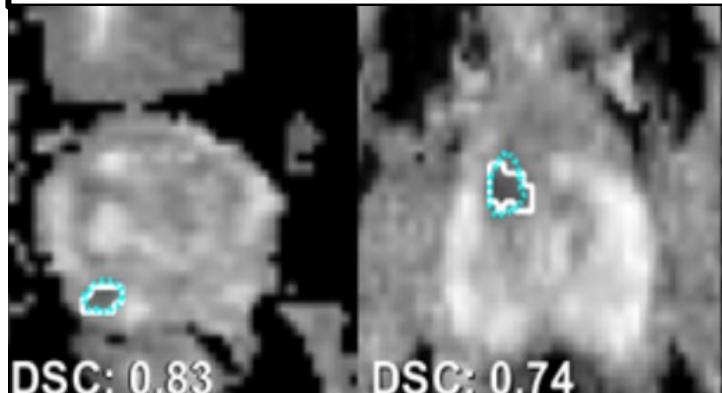
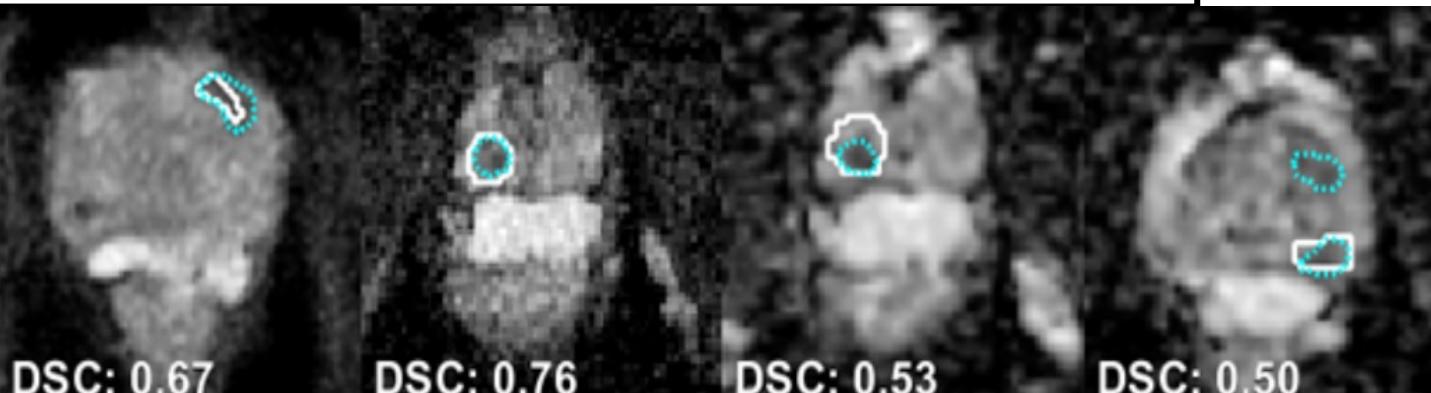
3T Siemens

3T Philips

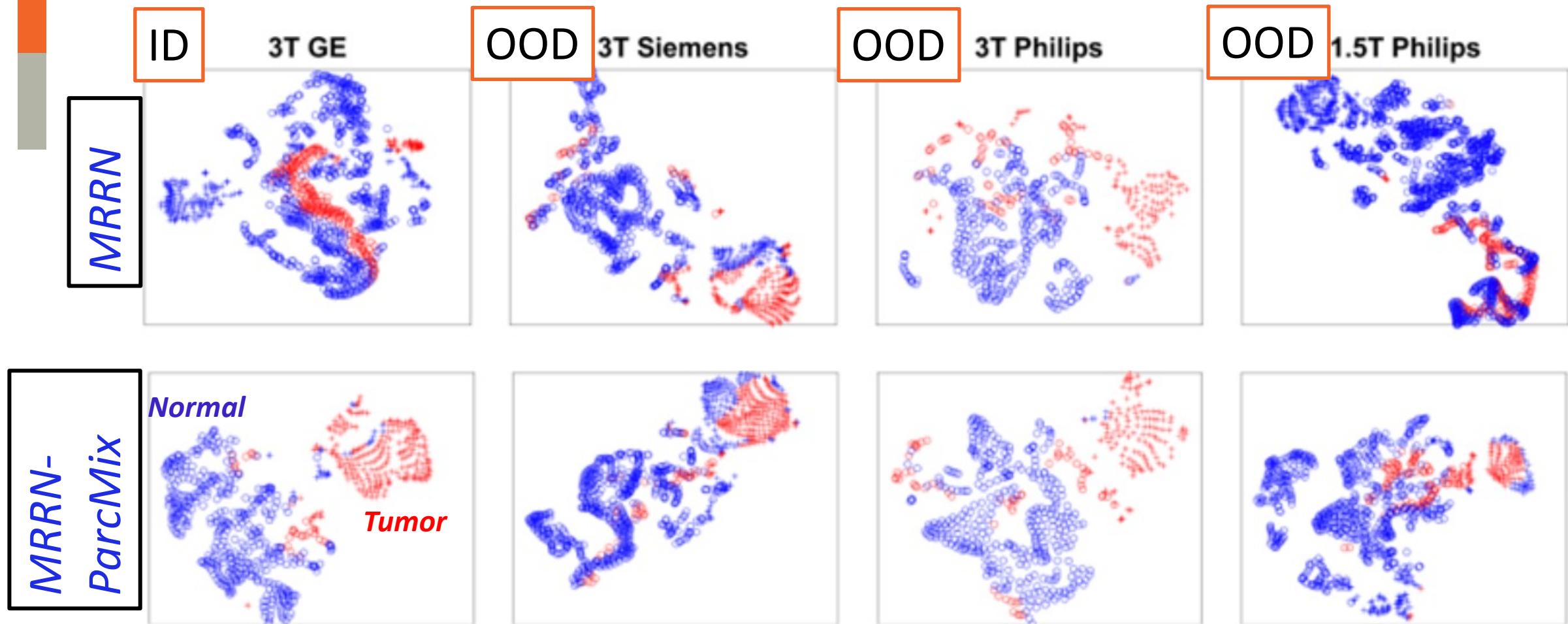
1.5T Philips



MRRN with *Parallel Coherent mixup (Parc-mix)*



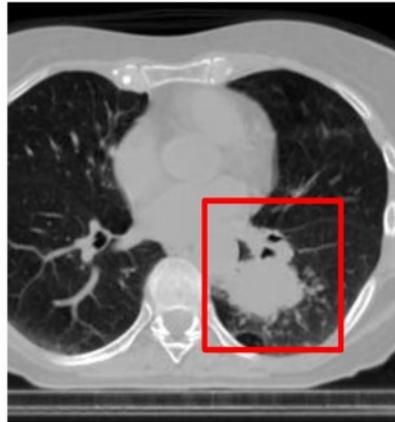
Improved regularization leads to better generalization across scanners



Using domain adaptation for increasing data variability

October 2019 | Volume 46, Issue 10

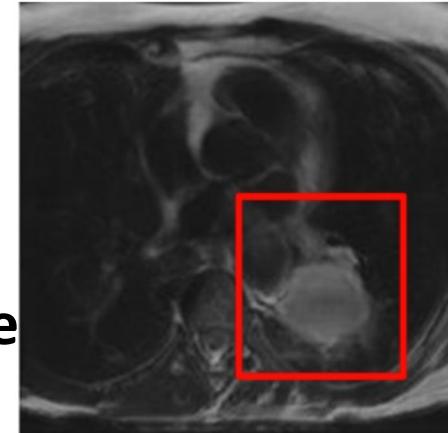
CT Image



Our approach

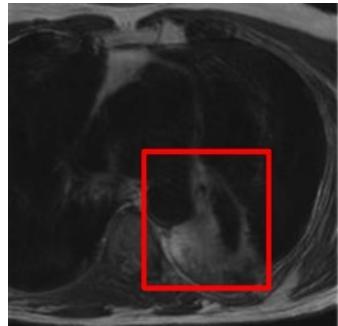
Tumor-aware

Generated MRI

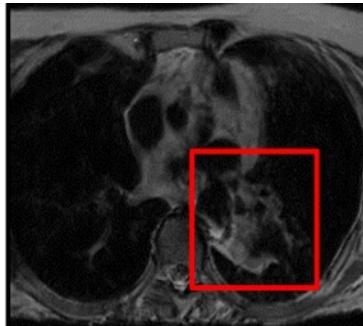


Comparison methods

Cycle GAN

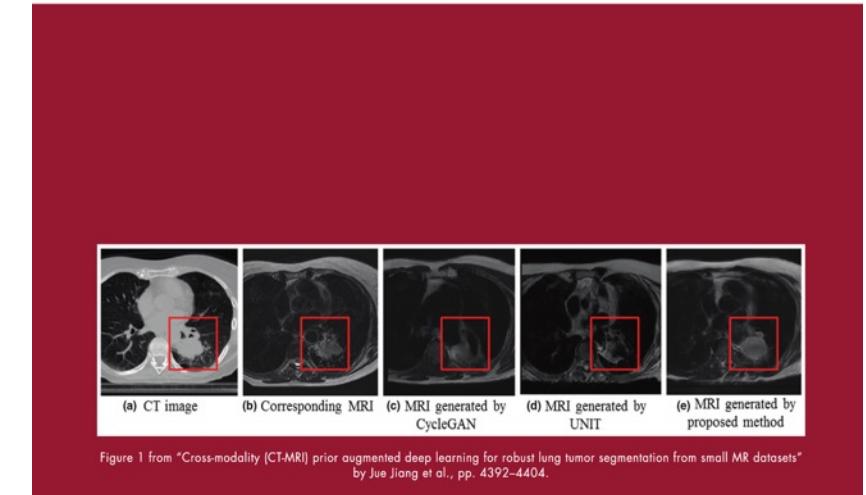


UNIT GAN



MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice



Jiang J, .. Deasy J, Veeraraghavan H 2018

Medical Physics is an official journal of the AAPM, the International Organization for Medical Physics (IOMP), and the Canadian Organization of Medical Physicists (COMP).

AMERICAN ASSOCIATION
of PHYSICISTS IN MEDICINE

WILEY

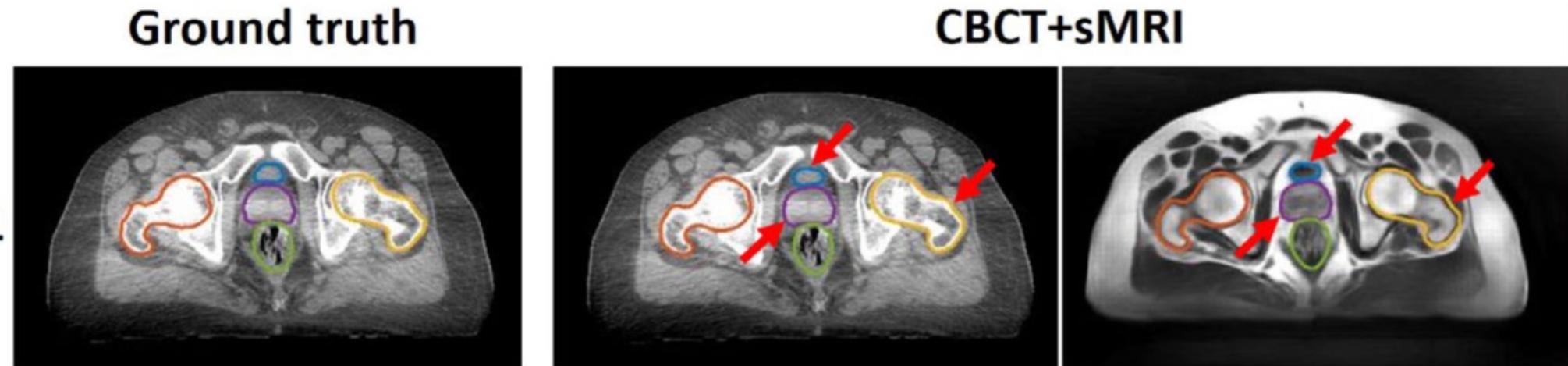
Good constraints are required to ensure preservation of structures like tumors

Cross domain adaptation for improving segmentation

> *Med Phys.* 2020 Aug;47(8):3415-3422. doi: 10.1002/mp.14196. Epub 2020 May 11.

Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy

Yabo Fu ¹, Yang Lei ¹, Tonghe Wang ¹, Sibo Tian ¹, Pretesh Patel ¹, Ashesh B Jani ¹,
Walter J Curran ¹, Tian Liu ¹, Xiaofeng Yang ¹

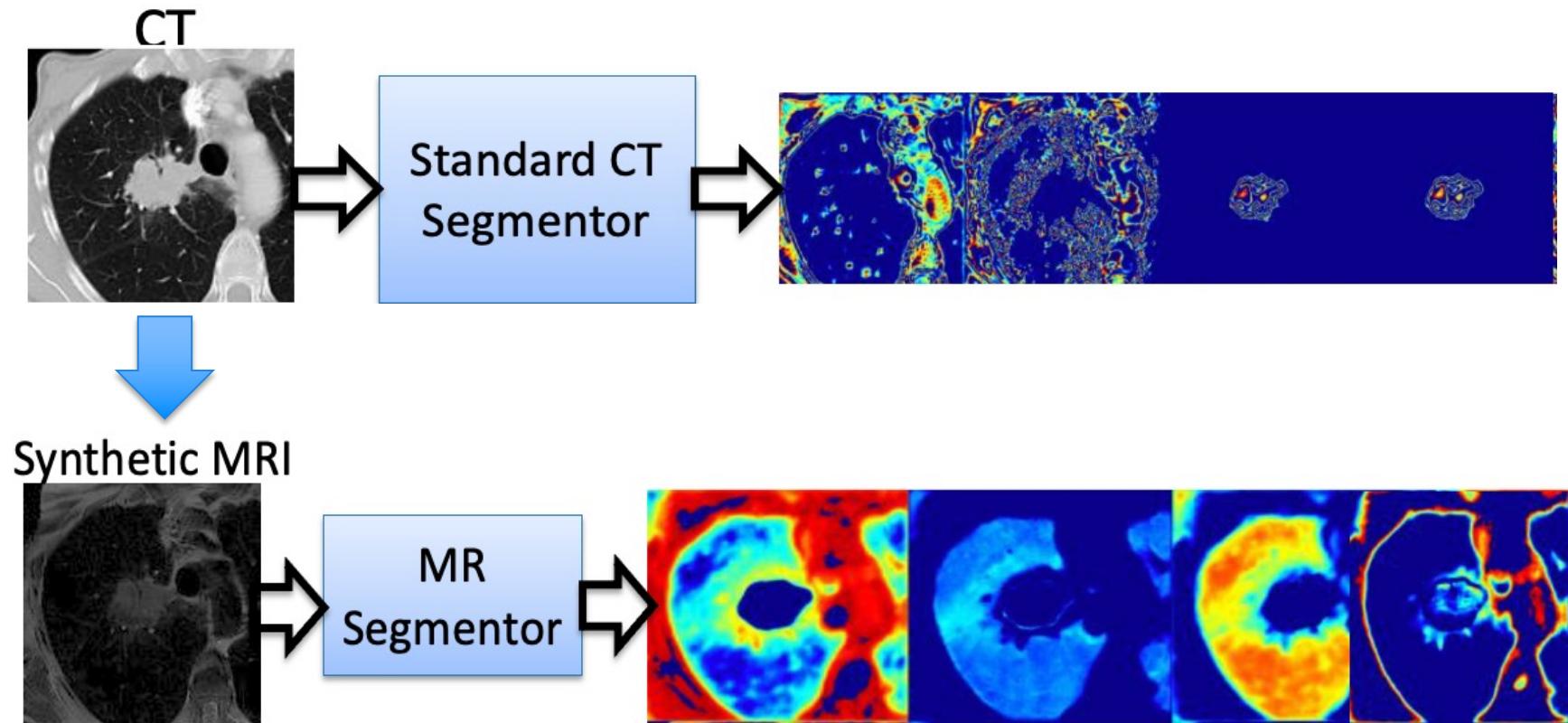


Uses high soft-tissue contrast in MRI to improve cone beam CT segmentation

Memorial Sloan Kettering
Cancer Center

Cross modality distillation to learn “better” features

Problem: Features extracted directly from CT cannot sufficiently discriminate tumor from background



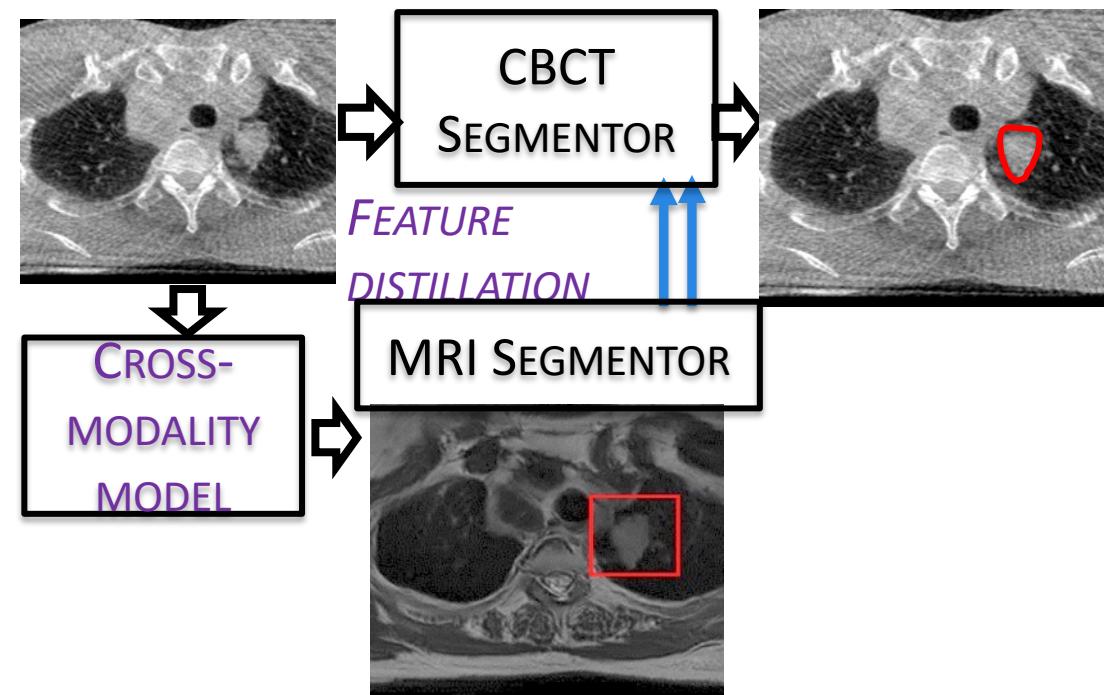
Leverage MRI to regularize CBCT network and extract “relevant” features

> Med Phys. 2021 Apr 27. doi: 10.1002/mp.14902. Online ahead of print.

Deep cross-modality (MR-CT) educated distillation learning for cone beam CT lung tumor segmentation

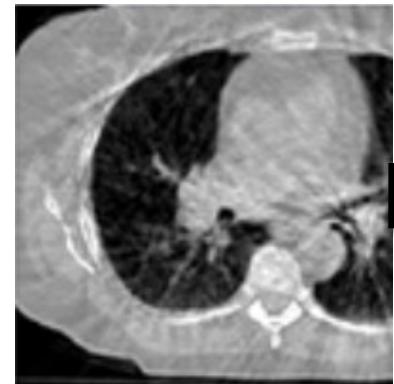
Jue Jiang ¹, Sadegh Riyahi Alam ¹, Ishita Chen ², Perry Zhang ¹, Andreas Rimner ²,
Joseph O Deasy ¹, Harini Veeraraghavan ¹

- Practical no need for paired multi-modality datasets
- Efficient only needs the CBCT network for testing
- Accurate because errors in synthesis do not propagate at testing

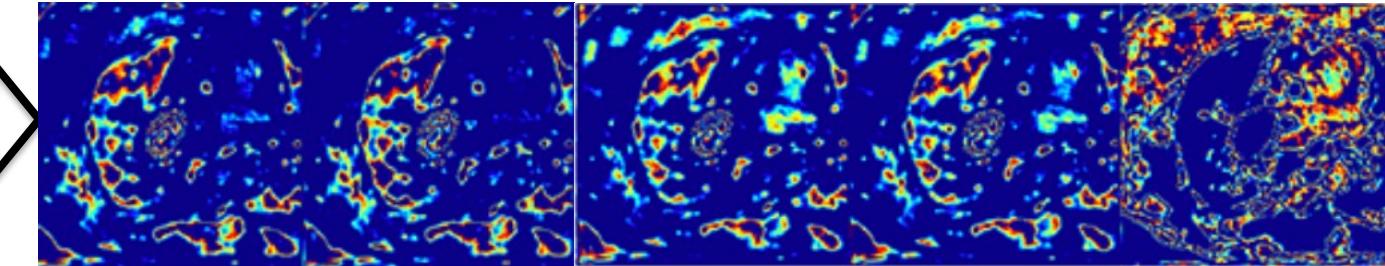
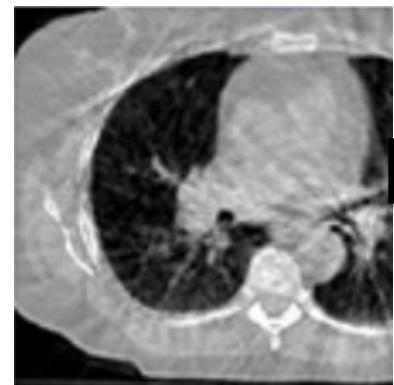


Memorial Sloan Kettering
Cancer Center

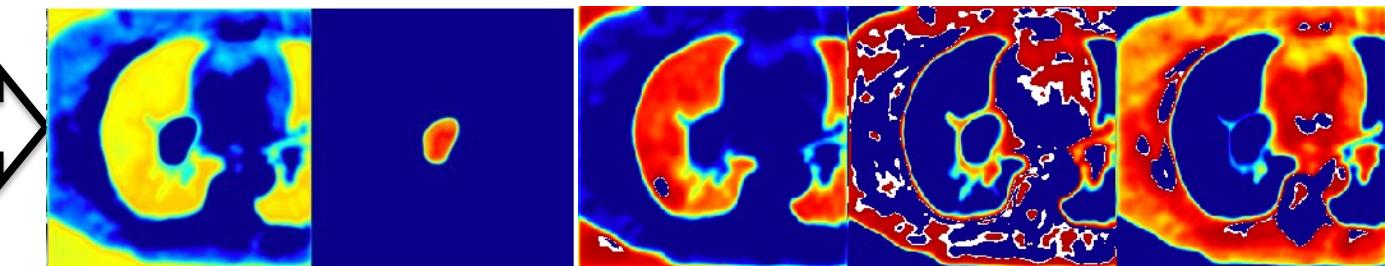
Why does CMEDL regularization work?



CBCT
Segmentor
3DUnet



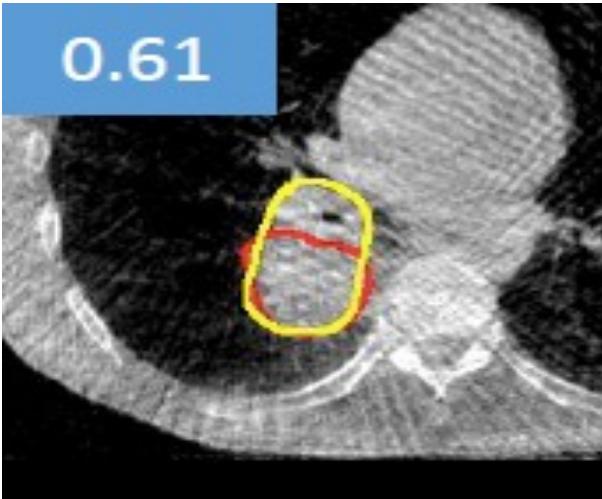
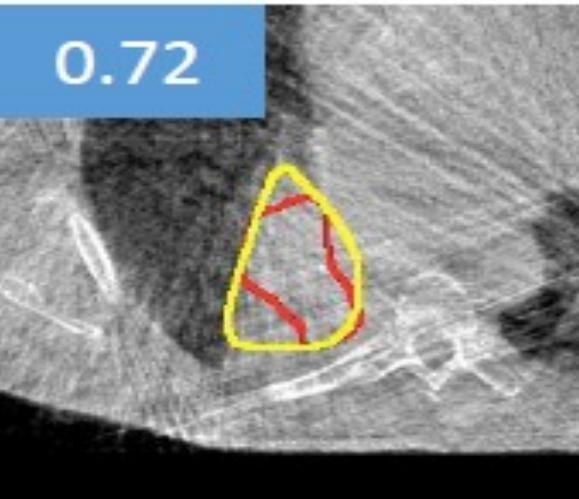
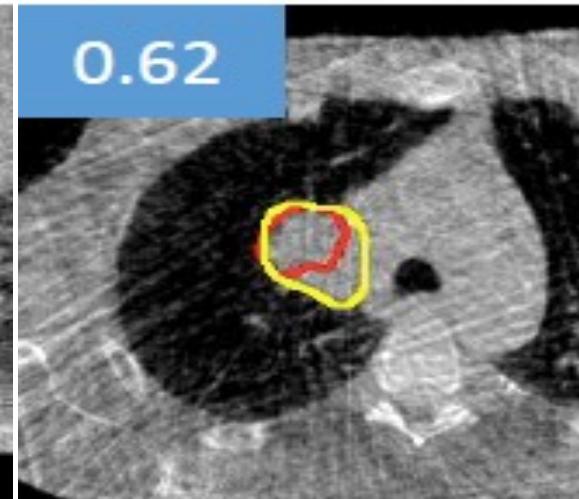
CMEDL CBCT
3DUnet



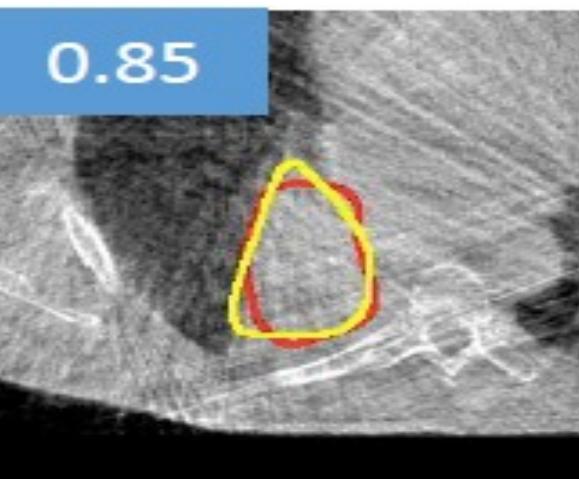
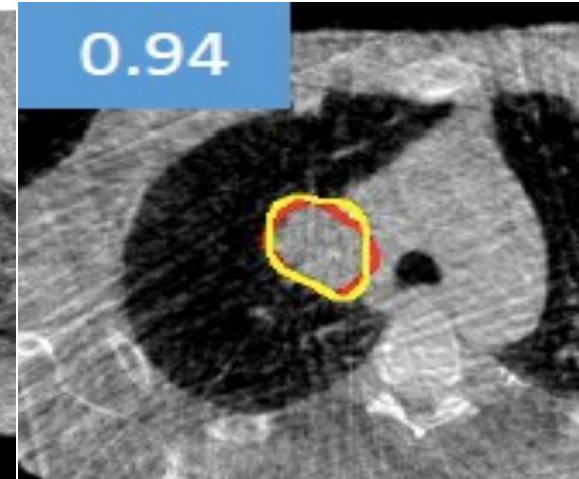
Cross modality distillation forces network to learn features signaling contrast between foreground and background

Memorial Sloan Kettering
Cancer Center

Does CMEDL improve accuracy?

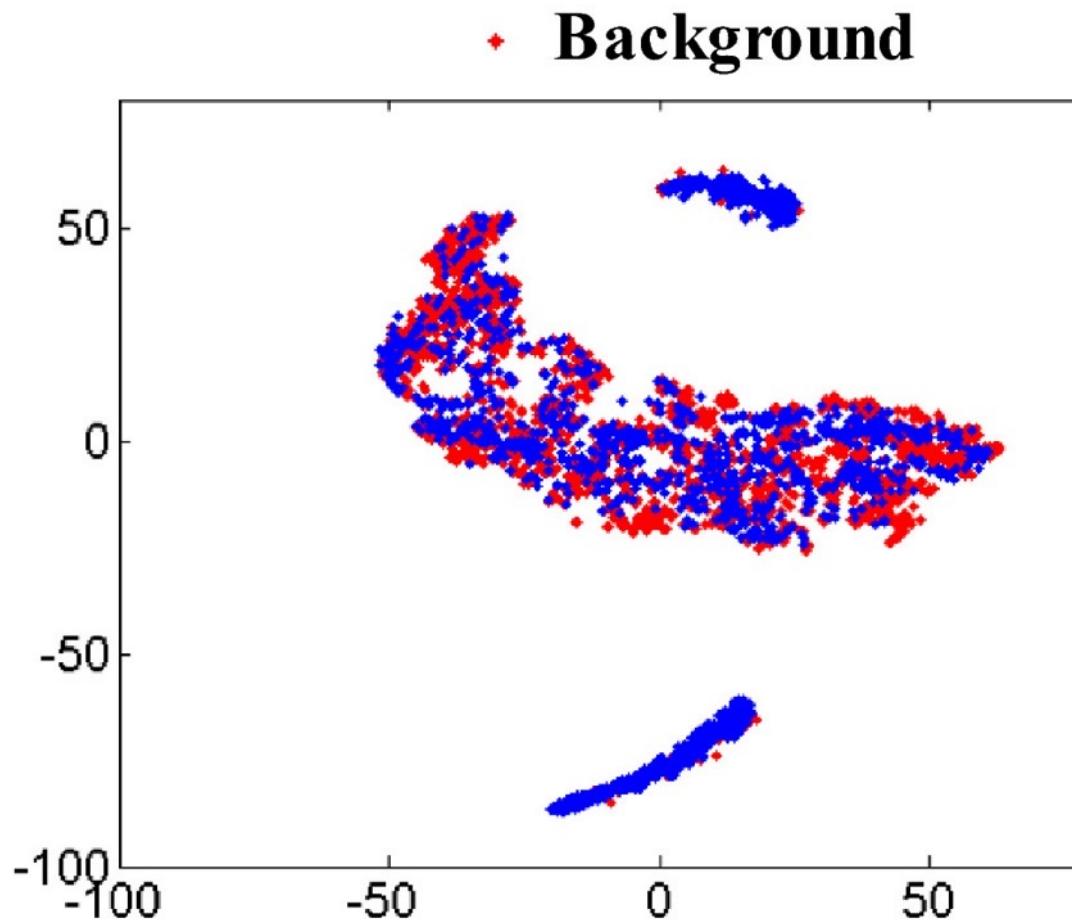
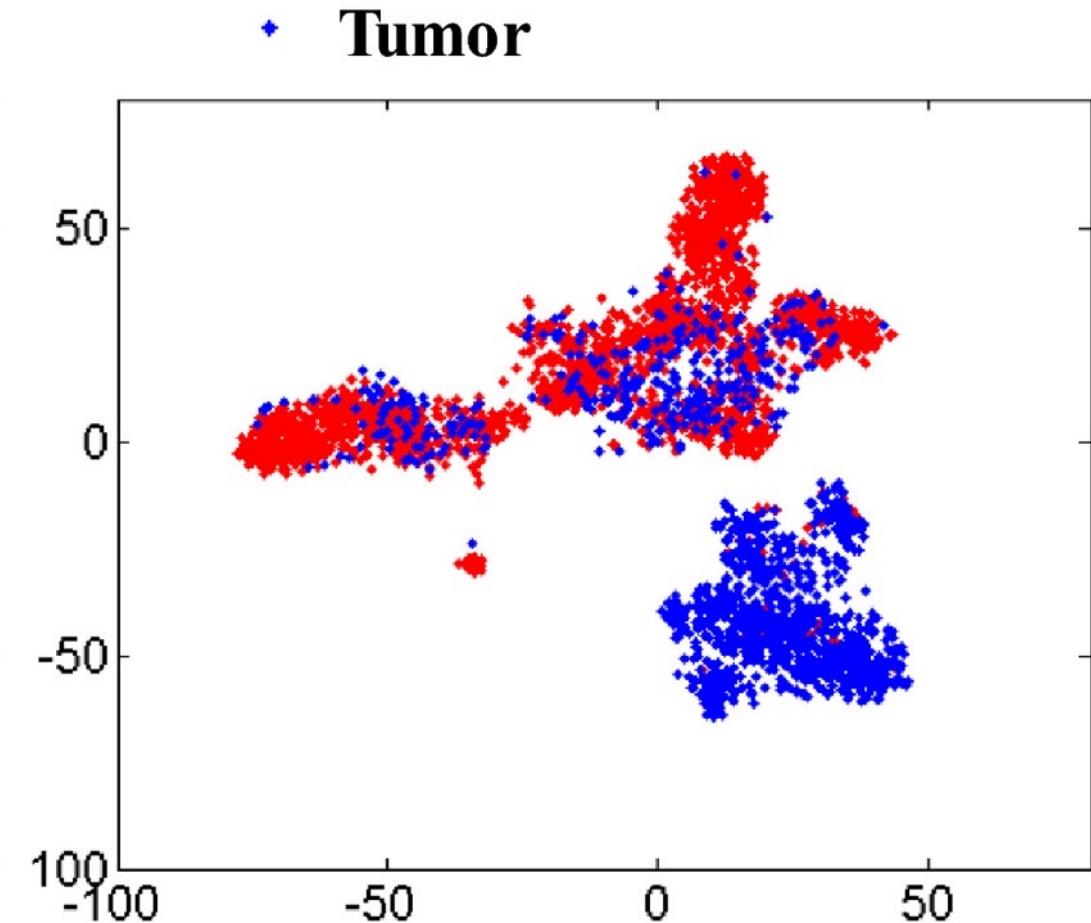


Algorithm
Expert



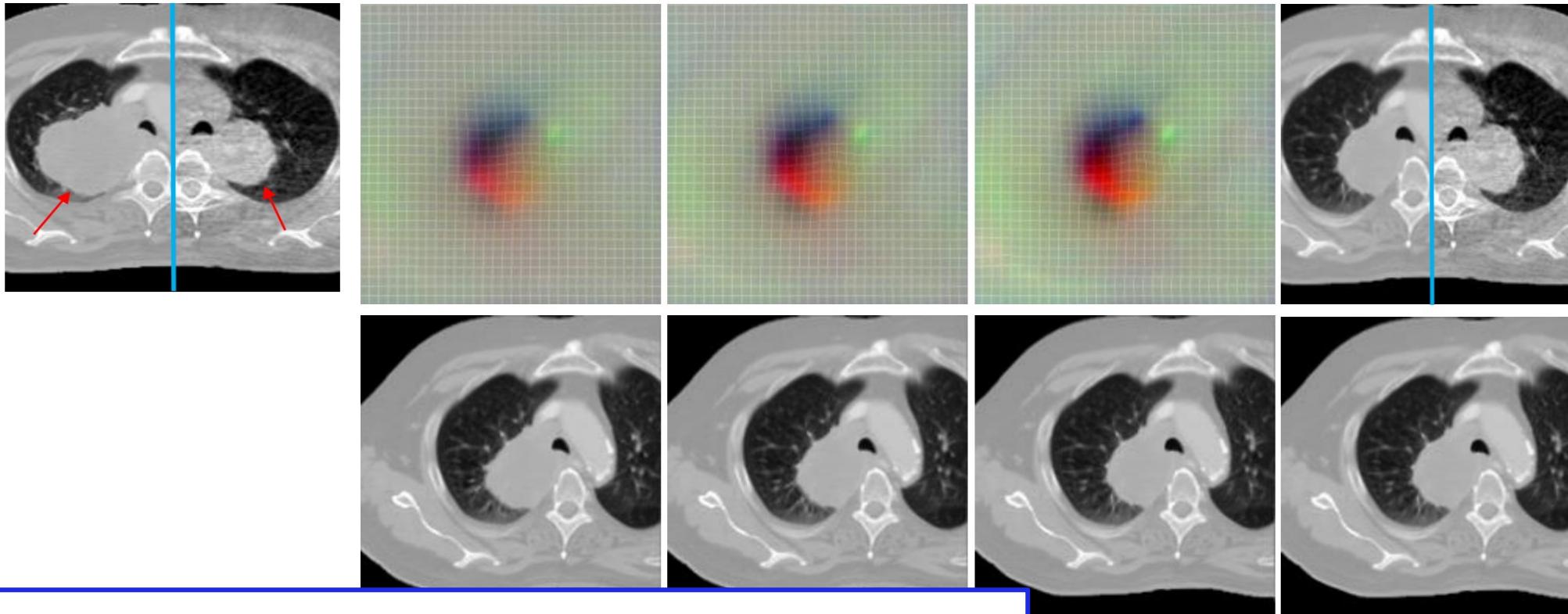
Memorial Sloan Kettering
Cancer Center

Does CMEDL really work?



Results from mix of public and internal 38 test cases

Patient specific segmentation combining registration



> IEEE Trans Med Imaging. 2022 Feb 25;PP. doi: 10.1109/TMI.2022.3154934. Online ahead of print.

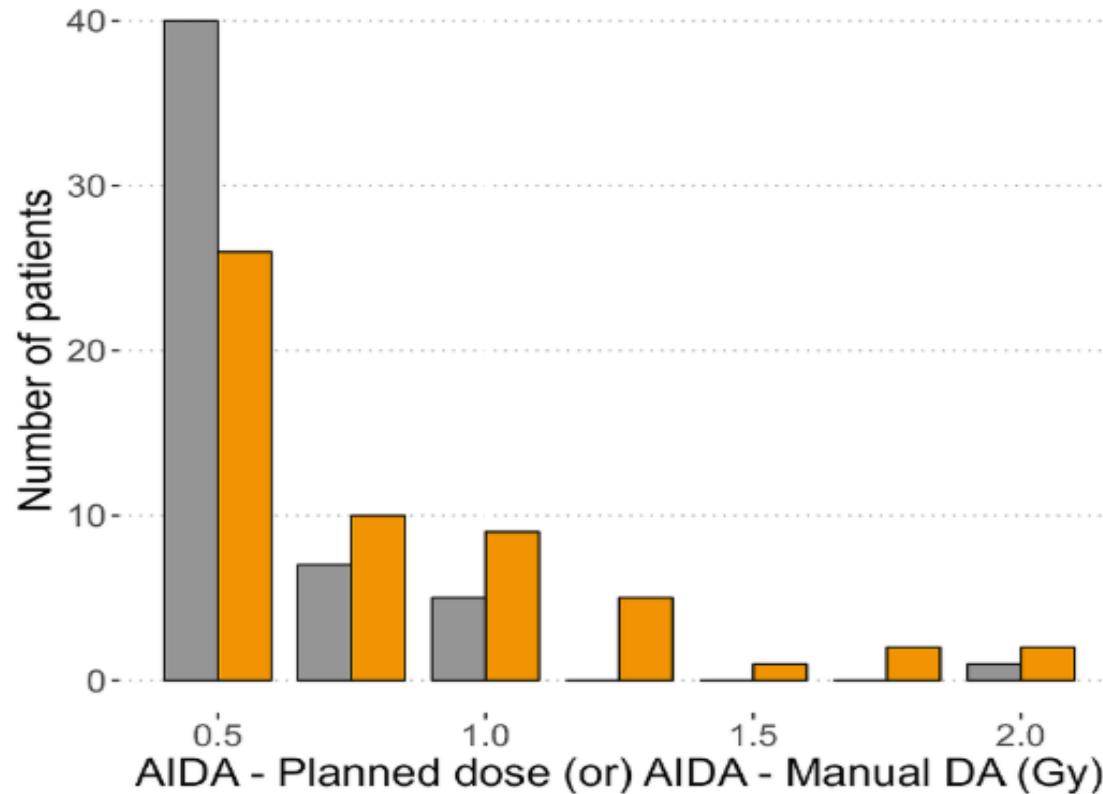
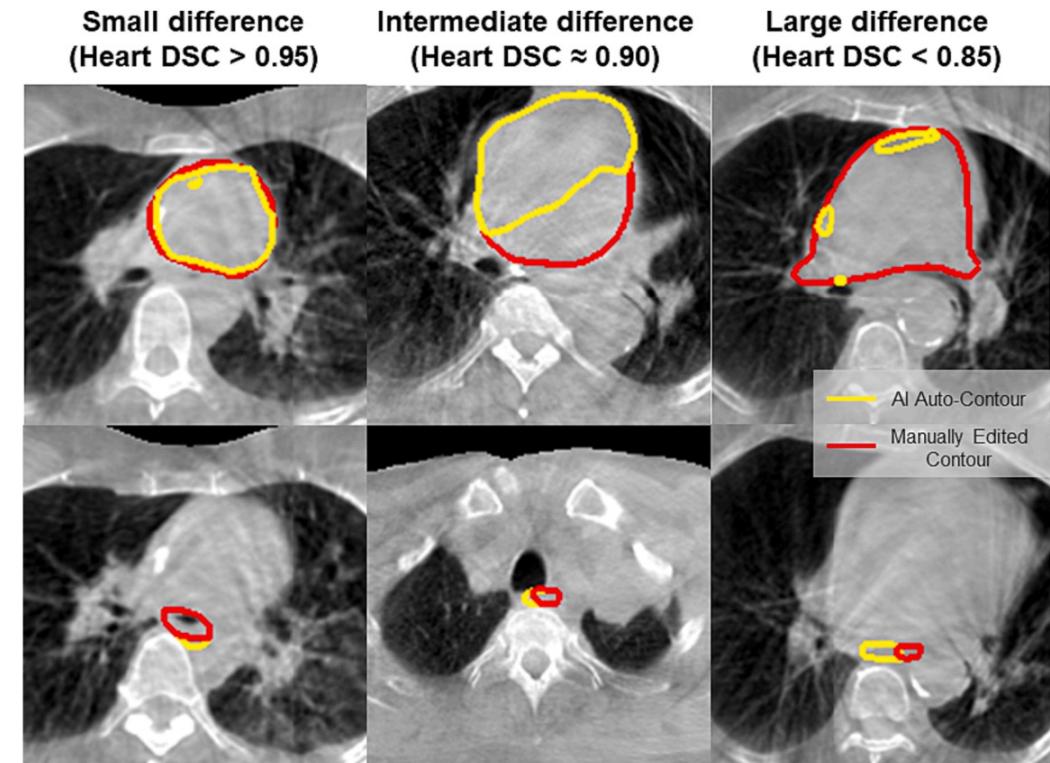
One shot PACS: Patient specific Anatomic Context and Shape prior aware recurrent registration– segmentation of longitudinal thoracic cone beam CTs

Jue Jiang, Harini Veeraraghavan

Memorial Sloan Kettering
Cancer Center

Artificial intelligence-based automated segmentation and radiotherapy dose mapping for thoracic normal tissues

Jue Jiang ¹, Chloe Min Seo Choi ^{1 2}, Joseph O Deasy ¹, Andreas Rimmer ³, Maria Thor ¹,
Harini Veeraraghavan ¹



Memorial Sloan Kettering
Cancer Center

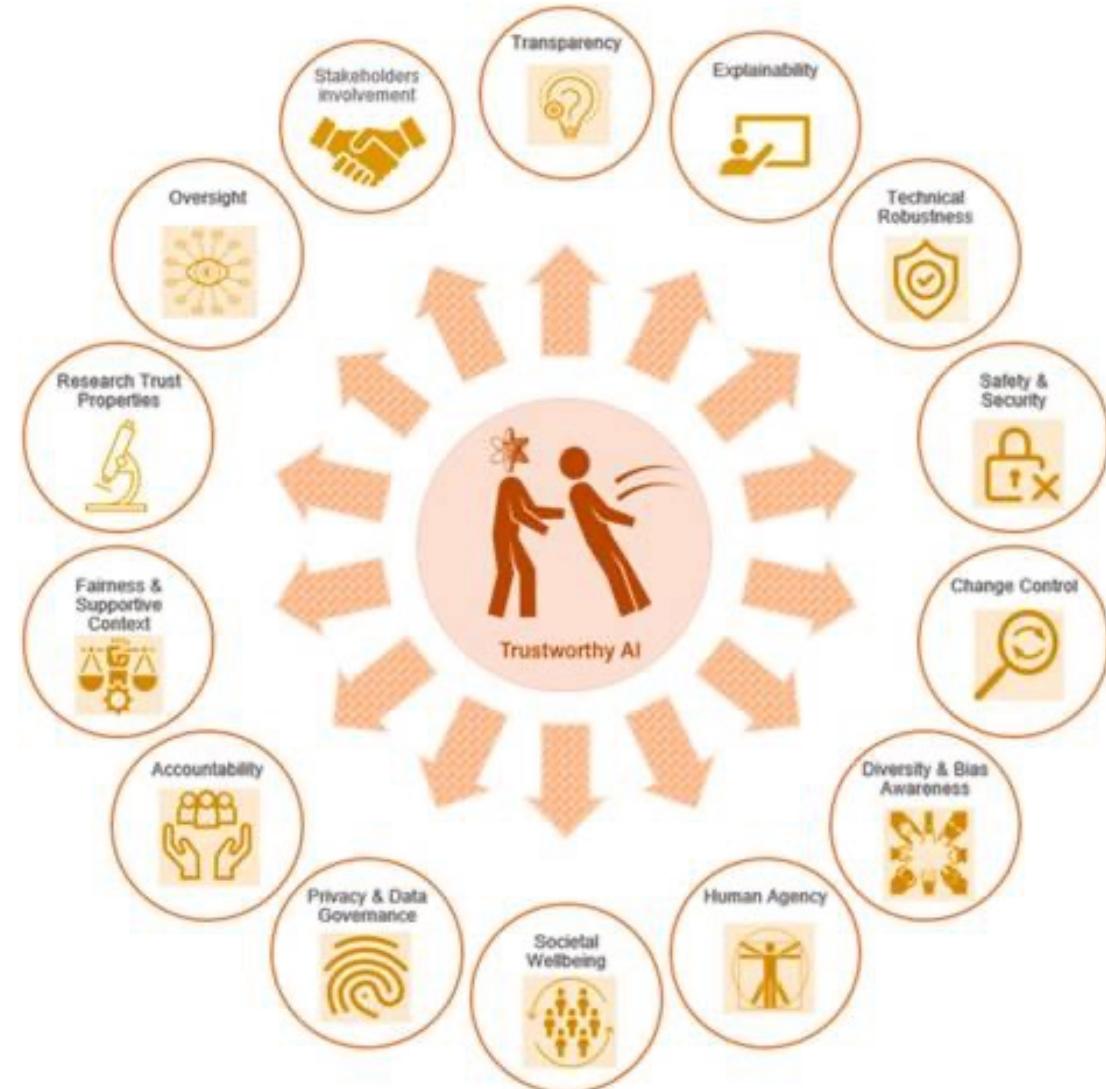
Models also need to be trustworthy to ensure Fair and Uninterrupted treatments

Memorial Sloan Kettering
Cancer Center

Multiple dimensions of trustworthiness

Change control plan

- Prespecified methods to update and evaluate models
- Commissioning testing and testing data used for updates



Review > PET Clin. 2022 Jan;17(1):1-12. doi: 10.1016/j.cpet.2021.09.007.

Trustworthy Artificial Intelligence in Medical Imaging

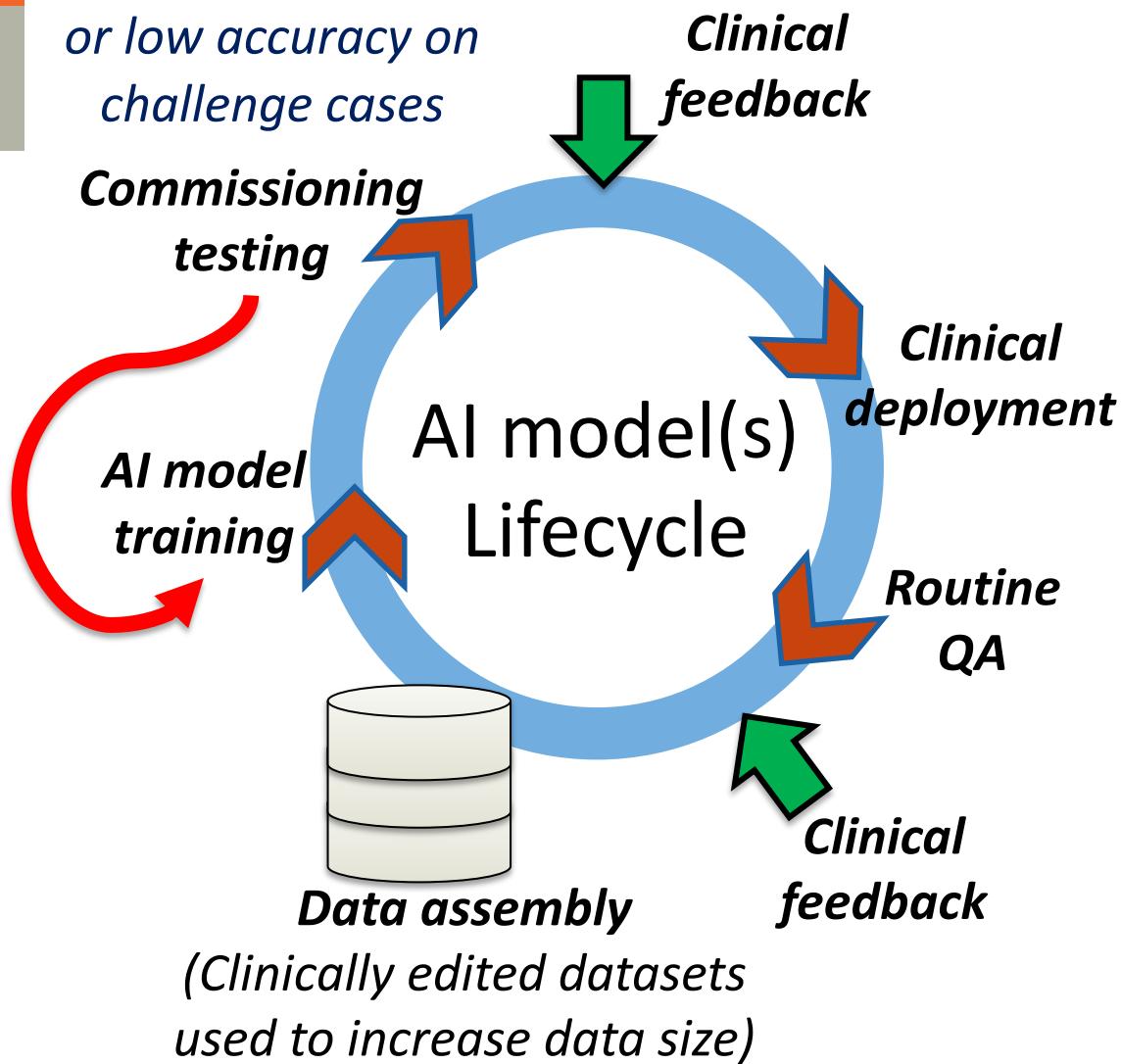
Navid Hasani ¹, Michael A Morris ², Arman Rhamim ³, Ronald M Summers ⁴, Elizabeth Jones ⁴, Eliot Siegel ⁵, Babak Saboury ⁶

Memorial Sloan Kettering
Cancer Center

Deploying AI models in clinic

Not passed

Clinician or anatomist
or low accuracy on
challenge cases



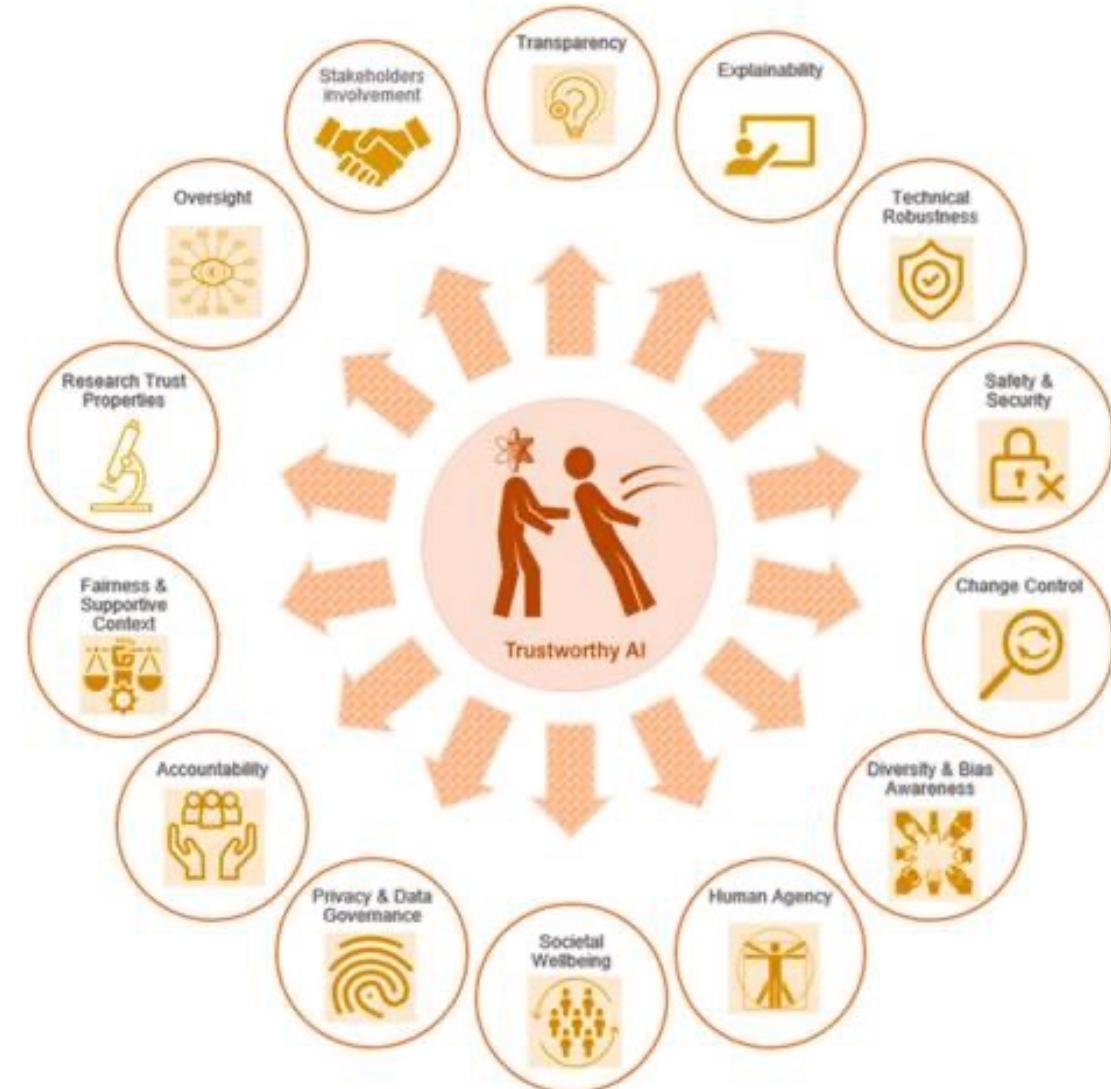
- Defined metrics for success
- Standardized development and testing pipeline
 - Commissioning testing sets separate from training & validation + "challenge" cases from prospectively scanned cases
- Online Quality assessment
- Involve various stakeholders in the development, testing, and commissioning process
 - radiation oncologists, physicists, computer scientists, anatomists, radiologists

Memorial Sloan Kettering
Cancer Center

Multiple dimensions of trustworthiness

Robustness and Fairness

- *Resilience to data variations and drifts*
- *Reduced bias to under-represented populations*



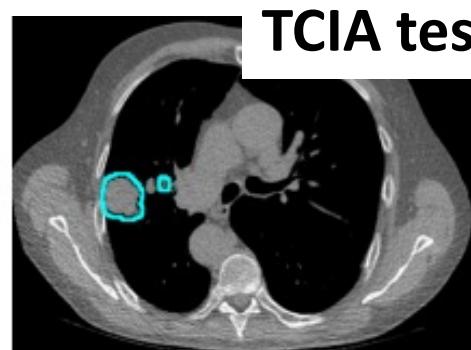
Review > PET Clin. 2022 Jan;17(1):1-12. doi: 10.1016/j.cpet.2021.09.007.

Trustworthy Artificial Intelligence in Medical Imaging

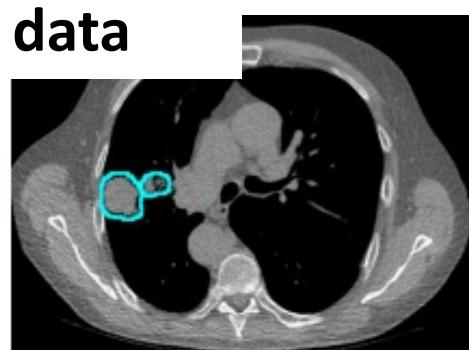
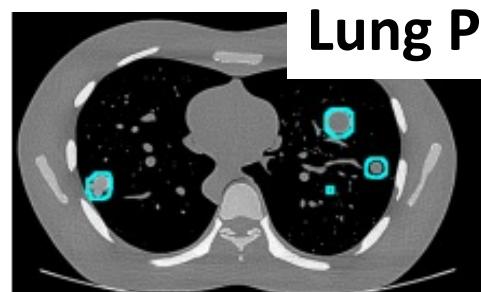
Navid Hasani ¹, Michael A Morris ², Arman Rhamim ³, Ronald M Summers ⁴, Elizabeth Jones ⁴, Eliot Siegel ⁵, Babak Saboury ⁶

Memorial Sloan Kettering
Cancer Center

Analyzing robustness of AI model to concept drift



TCIA test data

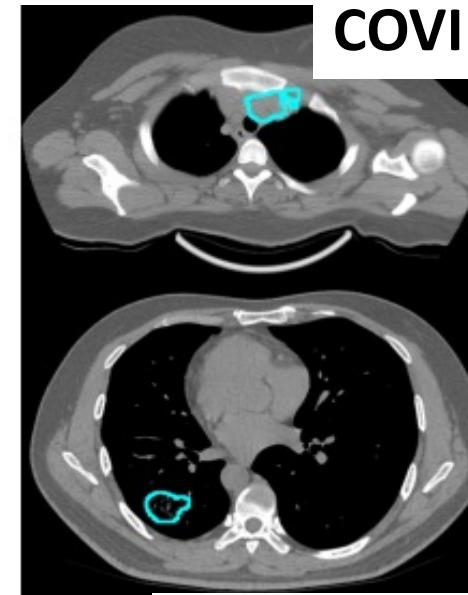


Swin UNETR

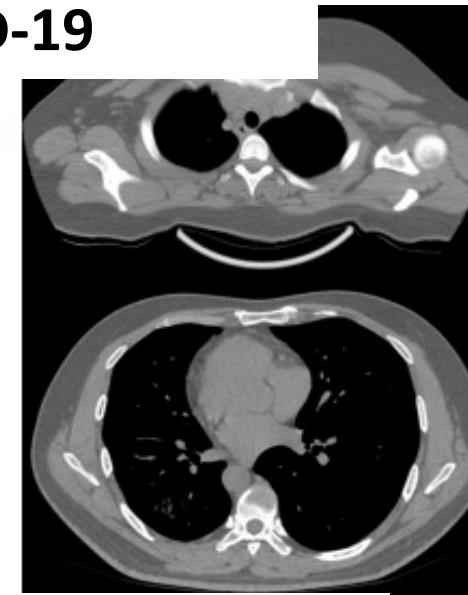
SMIT

In distribution

Rangnekar, ... Veeraraghavan In submission.

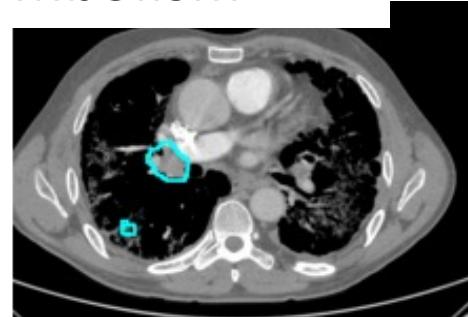


COVID-19



Pulmonary Embolism

Swin UNETR



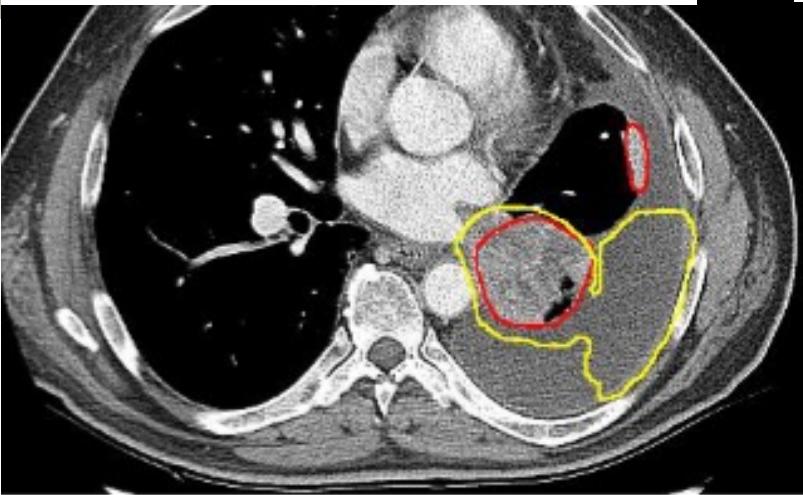
SMIT

Out of distribution

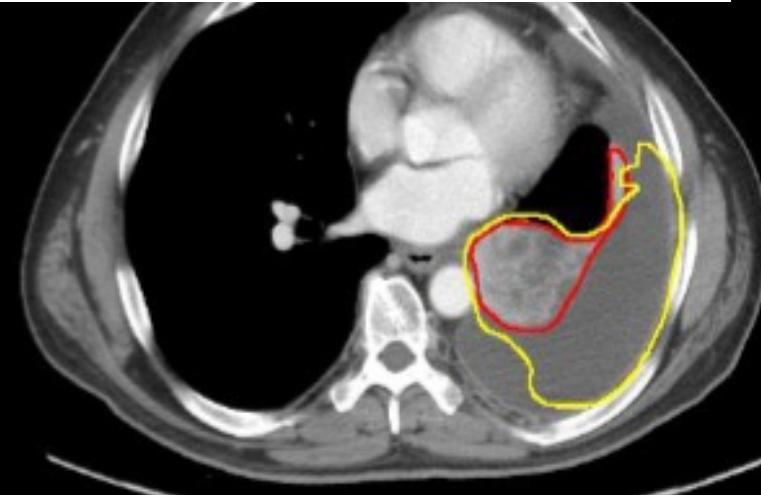
Cancer Center

Quantifying performance drifts is essential to make improvements

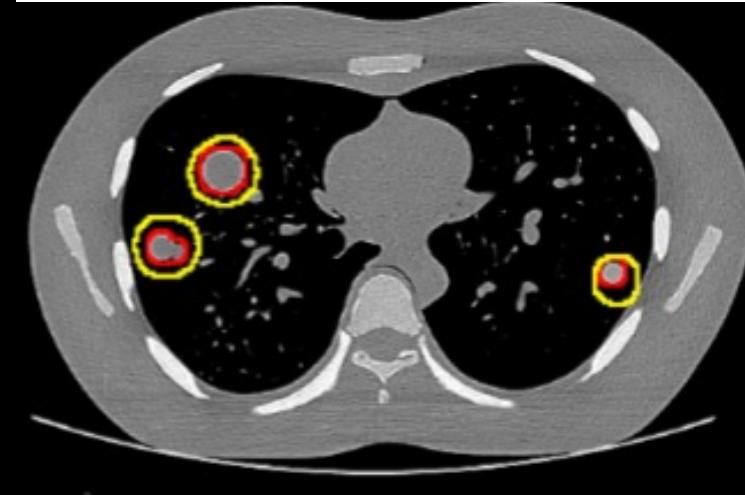
Lung reconstruction



Smooth reconstruction

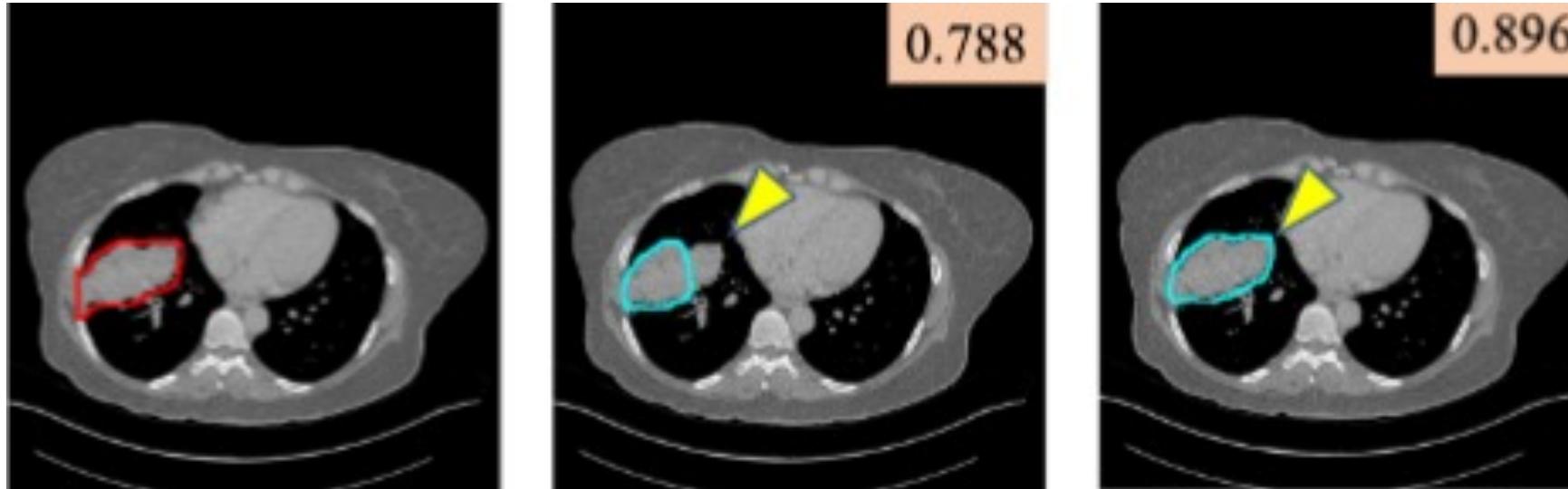


Non-contrast Phantom



- *Same model can result in performance variations with changes in images even from same patient*
- *Models need to be assessed not only for accuracy but also for performance drifts when employed in continuous clinical use*

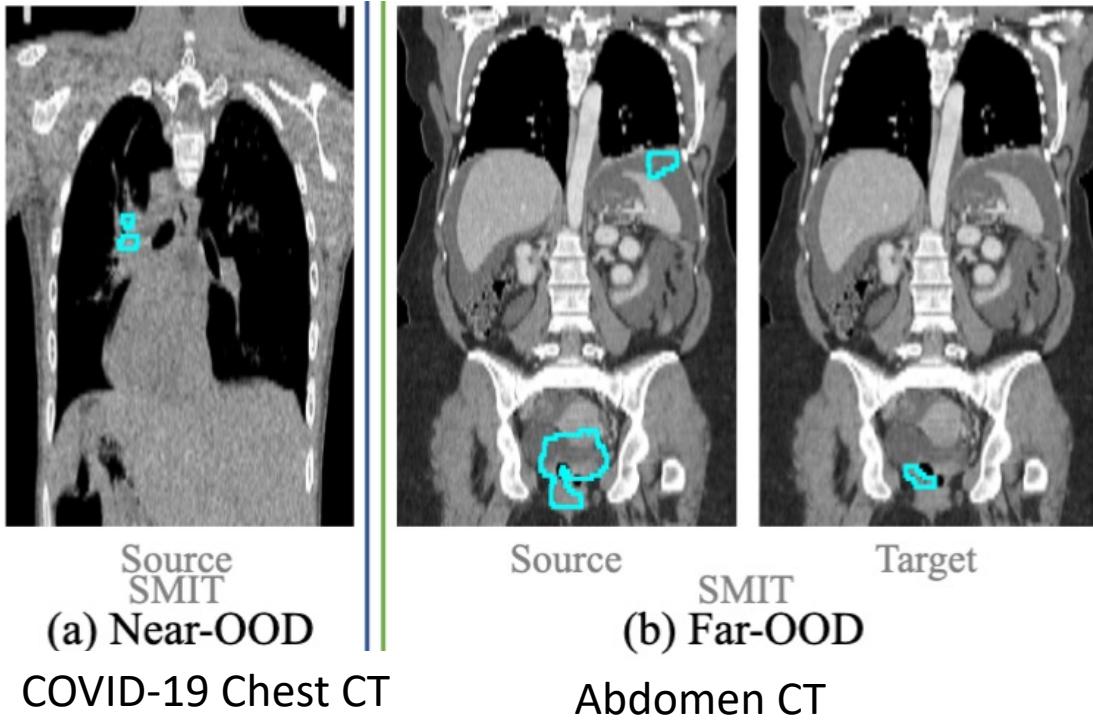
Standard metrics may be insufficient to detect drifts



Model	DSC (\uparrow)	RVD (\downarrow)	Pr (\uparrow)	Rc (\uparrow)
Swin	0.783 ± 0.091	0.175 ± 0.329	0.035	0.578
UNETR				
SMIT	0.798 ± 0.075	0.157 ± 0.281	0.131	0.635

Accuracy metrics show similar performance of two different networks

Accuracy metrics to identify performance drift

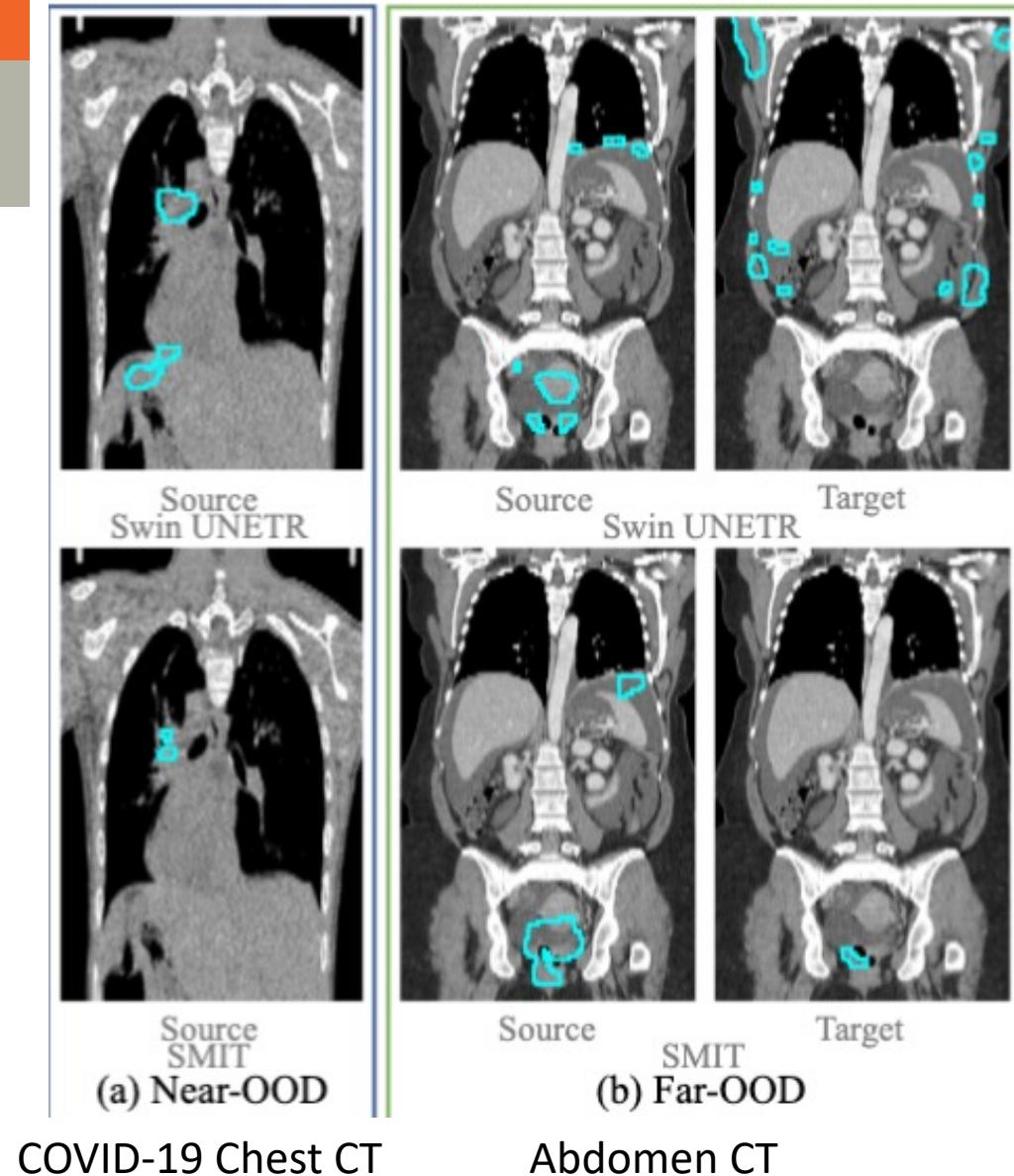


Data	AUROC	FPR @ 95
COVID-19 lung CT	89.85 %	34.62
Abdomen CT	99.02 %	5.77

- AUROC measures the accuracy of correctly detecting the lung tumors when they occur and not detecting other lesions as lung tumors
- FPR @ 95 or False positive rate at 95% measures the probability that a negative (out-of-distribution) example or non-lung tumor is segmented as positive (or in-distribution) lung tumor with a True Positive Rate as high as 95%

Memorial Sloan Kettering
Cancer Center

Differences emerge when analyzing OOD performance



Model	Dataset	AUROC	FPR @ 95
Swin	COVID-19	89.19 %	34.62
UNETR			
SMIT	COVID-19	89.85 %	34.62
Swin	Abdomen CT	82.39 %	38.46
UNETR			
SMIT	Abdomen CT	99.02 %	5.77

Memorial Sloan Kettering
Cancer Center

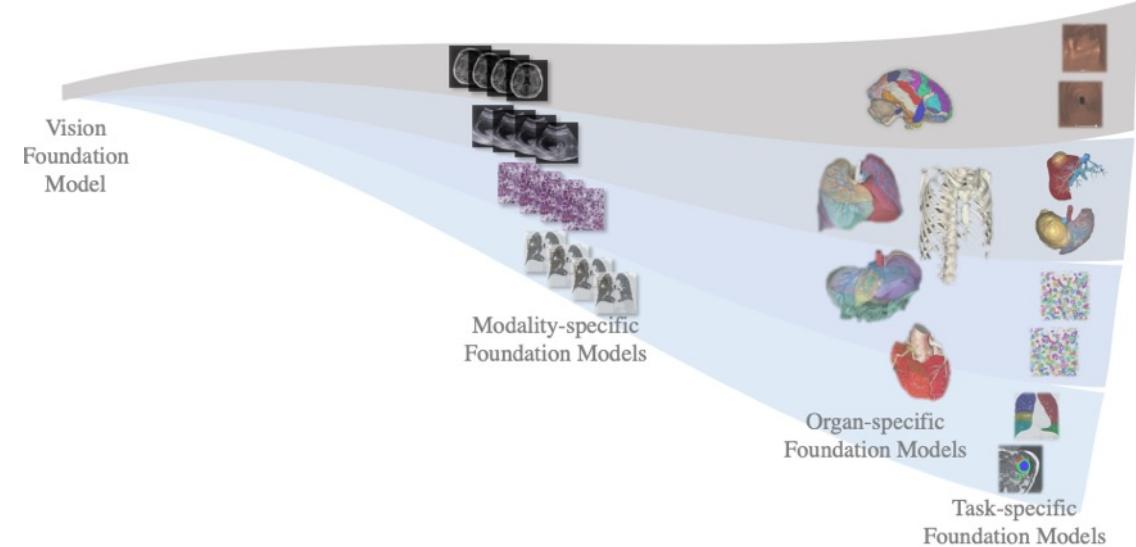
Increasing robustness to image variations

ON THE CHALLENGES AND PERSPECTIVES OF FOUNDATION MODELS FOR MEDICAL IMAGE ANALYSIS

A PREPRINT

Shaoting Zhang
Shanghai AI Laboratory
Shanghai, China
zhangshaoting@pjlab.org.cn

Dimitris Metaxas
Rutgers University
New Brunswick, NJ, USA
dnm@cs.rutgers.edu

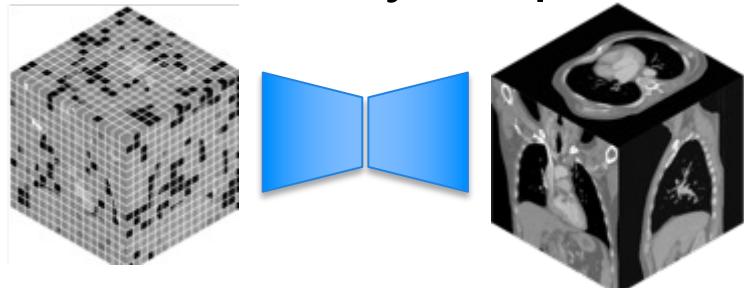


Medical foundation models or **large pretrained models** could allow to solve a wide range of tasks by accelerating the development of accurate models, while reducing need for large amounts of labeled training data

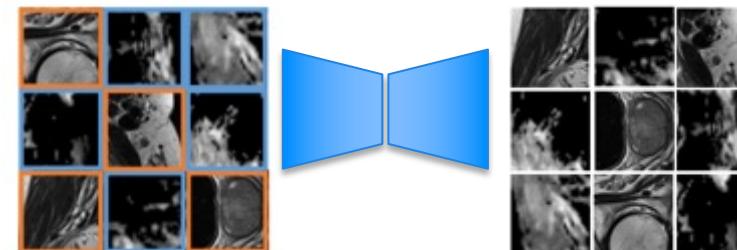
Memorial Sloan Kettering
Cancer Center

Self-supervised learning background

- Machine learning approach that uses unsupervised learning for tasks that conventionally require supervised learning
 - Instead of relying on supervised labels, generate implicit labels from unstructured data
 - Can be more time efficient and effective for massive datasets
 - Tasks are designed such that loss function can use unlabeled data as “ground truth” to extract meaningful representations
 - Pretext tasks yield pseudo labels



Predict masked portions of an image
Jiang et.al MICCAI 2022



Jigsaw puzzle recovery of images
Taleb et.al TMI 2020

Memorial Sloan Kettering
Cancer Center

Foundation models approach

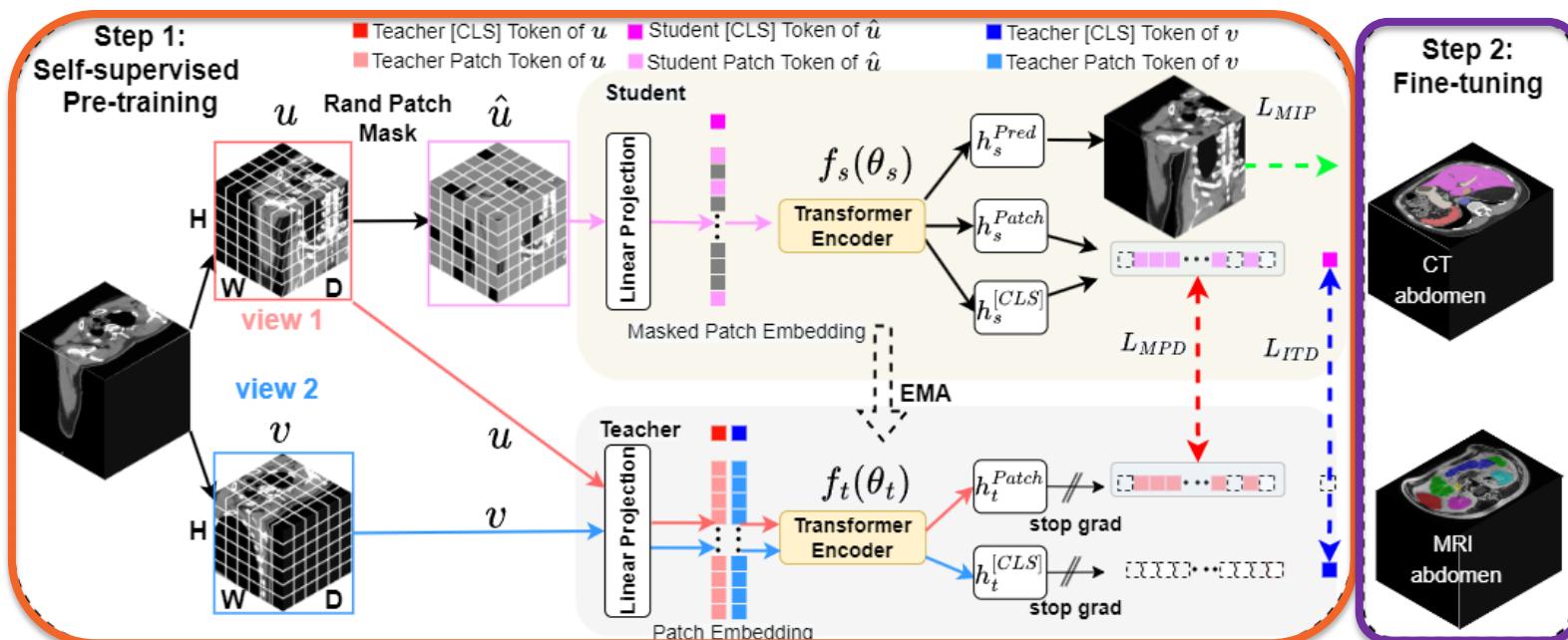
Self-supervised 3D Anatomy Segmentation Using Self-distilled Masked Image Transformer (SMIT)

Jue Jiang, Neelam Tyagi, Kathryn Tringale, Christopher Crane & Harini Veeraraghavan

Conference paper | [First Online: 16 September 2022](#)

1287 Accesses

Part of the [Lecture Notes in Computer Science](#) book series (LNCS, volume 13434)



1) *Self-supervised pre-training with uncurated 3D CTs from The Cancer Imaging Archive and Internal datasets*

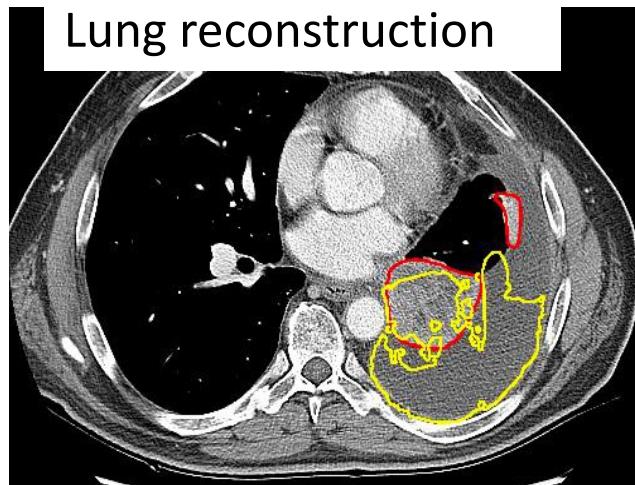
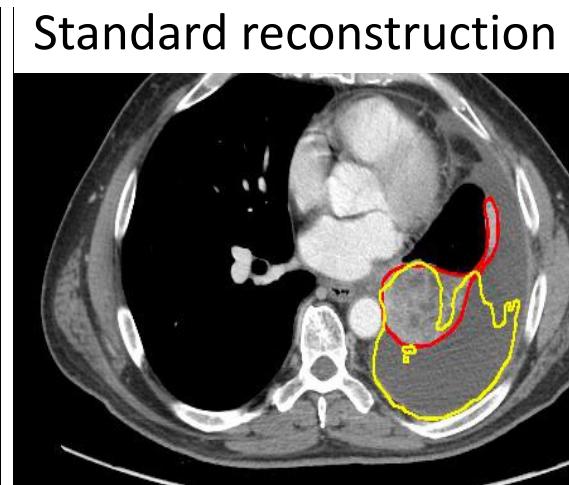
➤ *Current model uses ~ 10,000 3D CTs*

2) *Fine tune/transfer learn on task specific datasets*

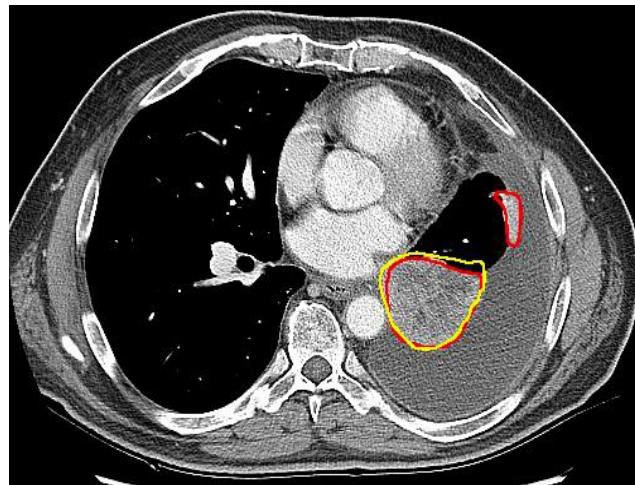
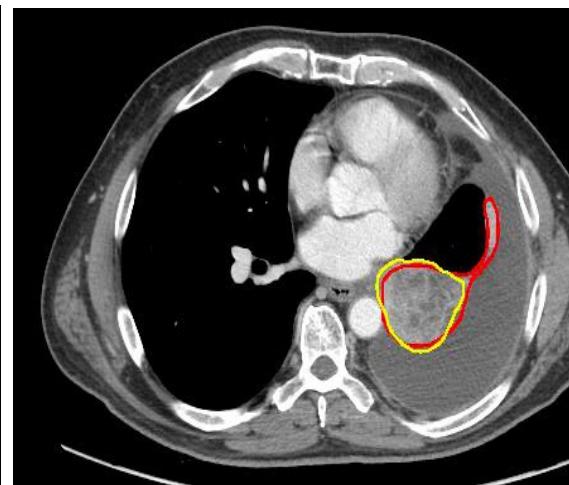
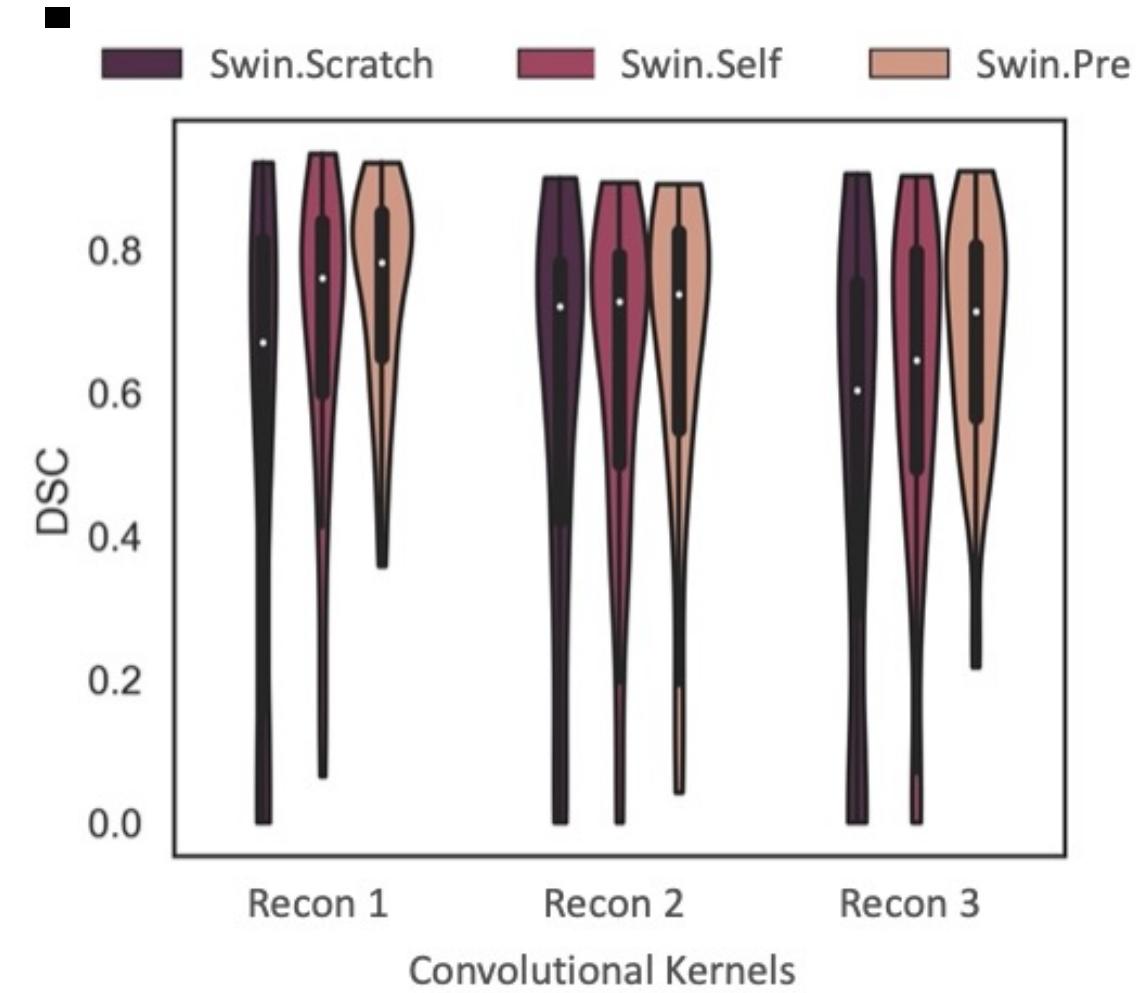
Memorial Sloan Kettering Cancer Center

Foundation models improve robustness to CT variations

Scratch training

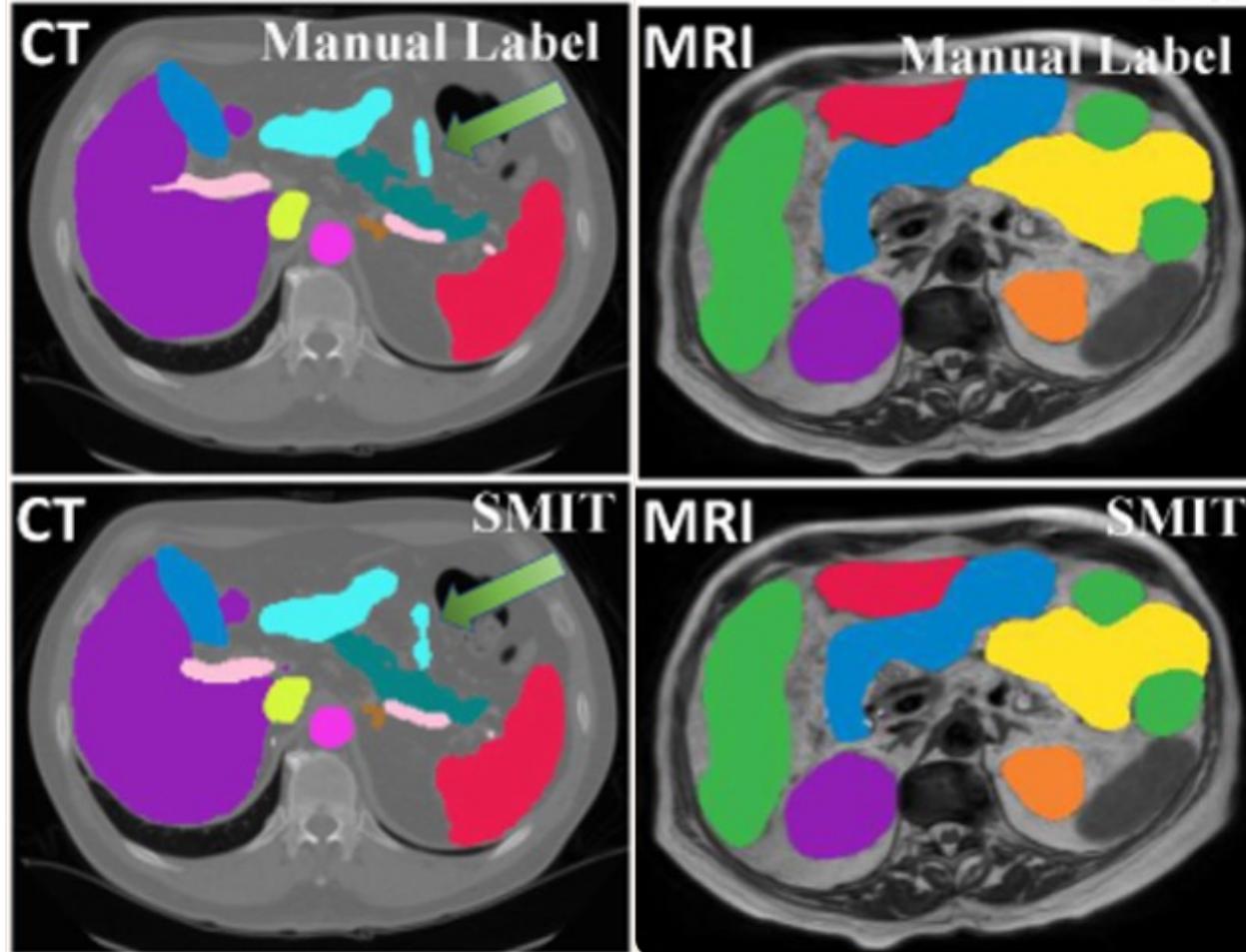
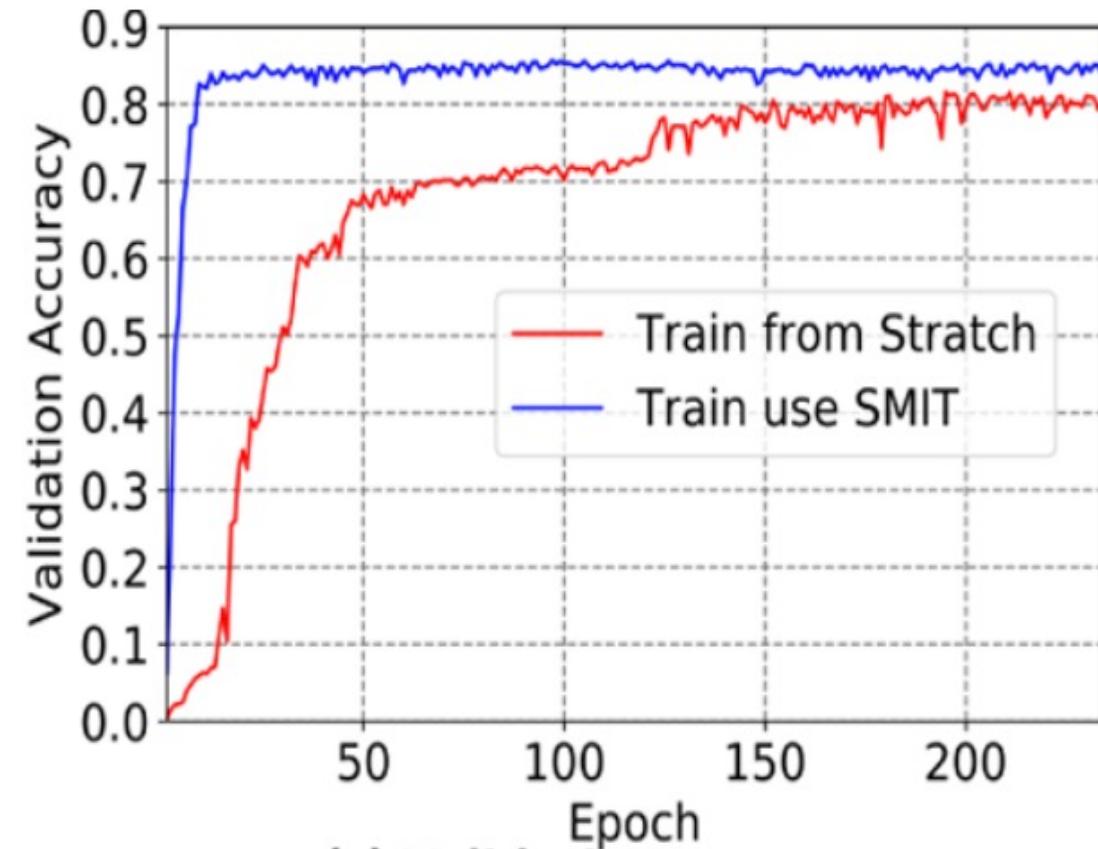


Foundation model



SMIT is transferable to multiple imaging modalities

- Fine-tuning SSL pretrained model is more accurate than supervised learning alone

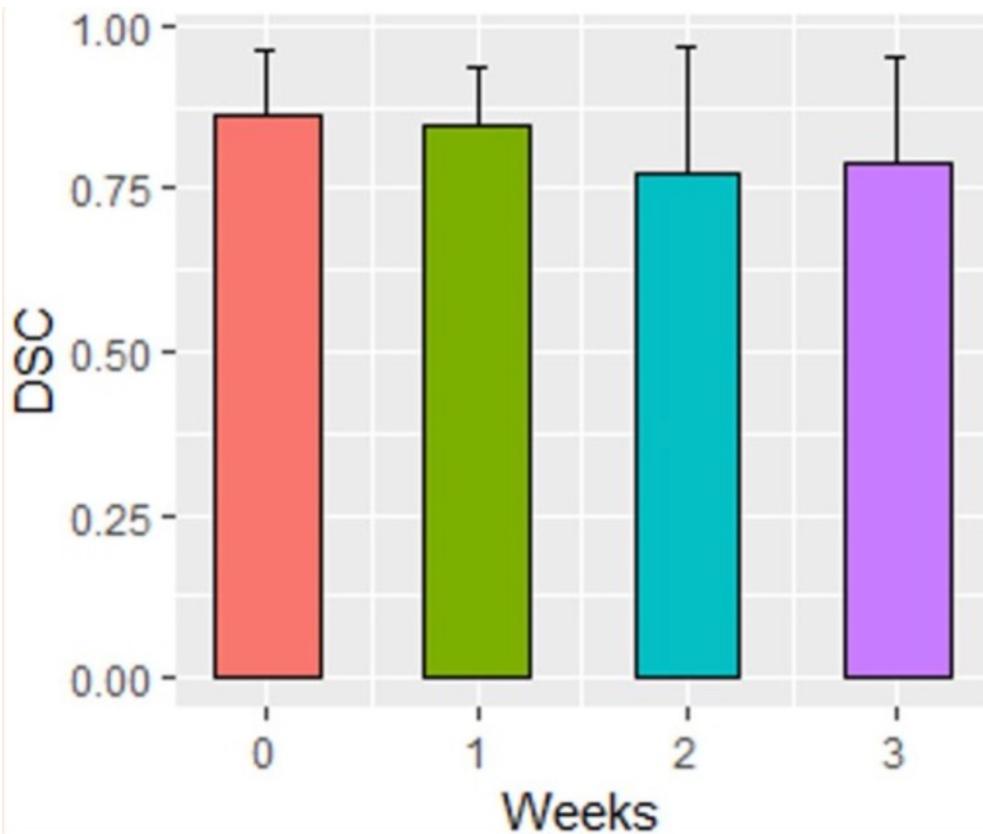
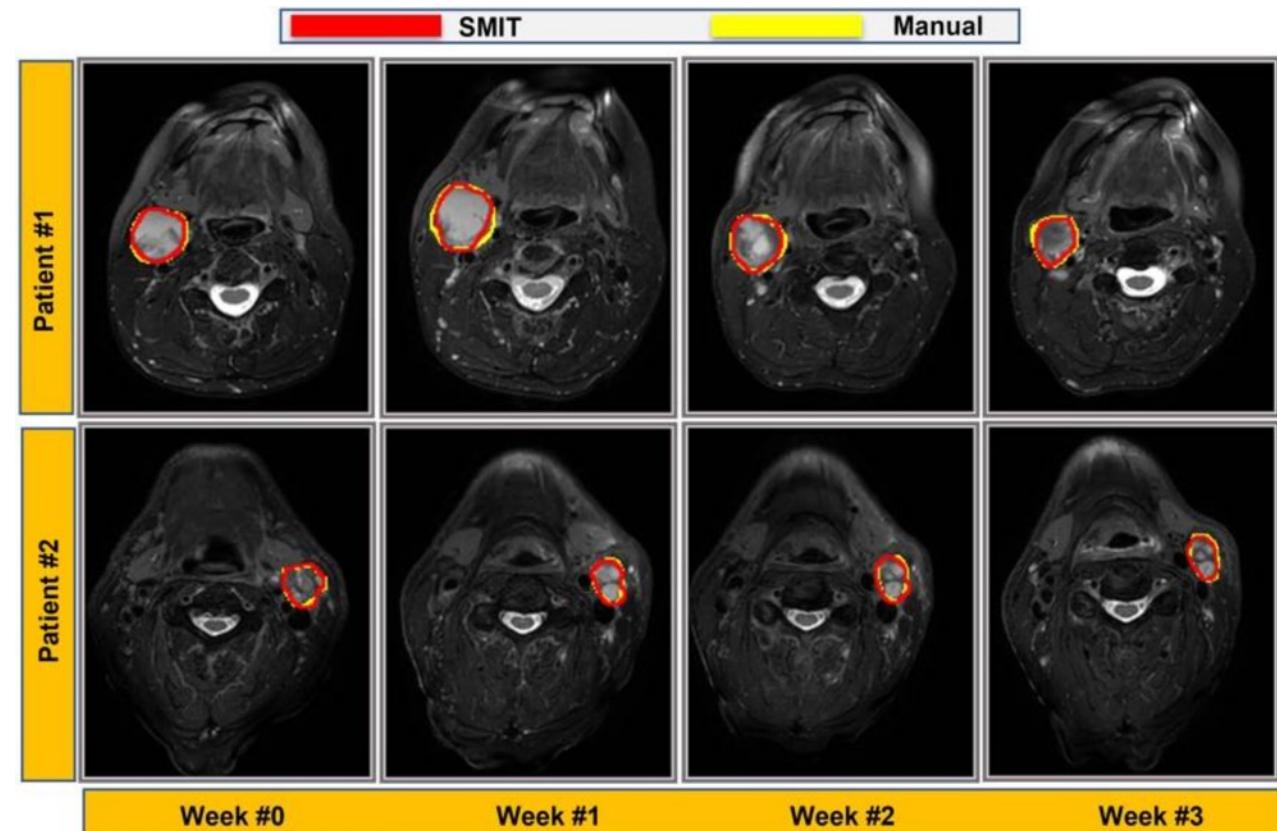


Code + Model: <https://github.com/harveerar/SMIT>

Memorial Sloan Kettering
Cancer Center

Auto-segmentation of neck nodal metastases using self-distilled masked image transformer on longitudinal MR images ⚡

Ramesh Paudyal, PhD, Jue Jiang, PhD, James Han, MD, Bill H Diplas, MD,
Nadeem Riaz, MD, Vaios Hatzoglou, MD, Nancy Lee, MD, Joseph O Deasy, PhD,
Harini Veeraraghavan, PhD ✉, Amita Shukla-Dave, PhD ✉



SMIT shows capability to track nodal metastases changes from MRI

Memorial Sloan Kettering
Cancer Center

SMIT can be applied in few-shot settings

- Models show capability for few shot training

Pretrained model using 10,000 3D CT from TCIA and institutional cases from cancer and non-cancer images

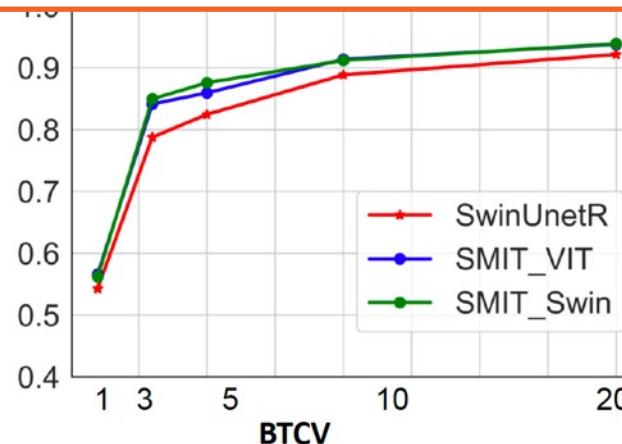
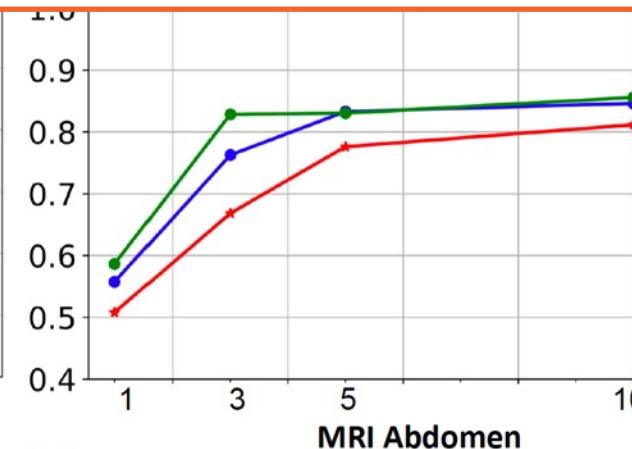
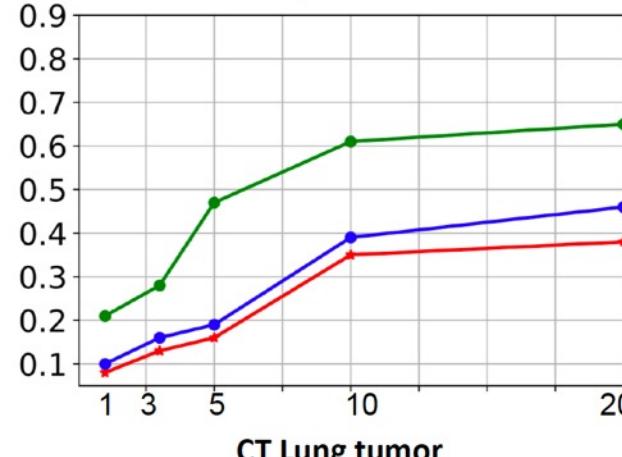
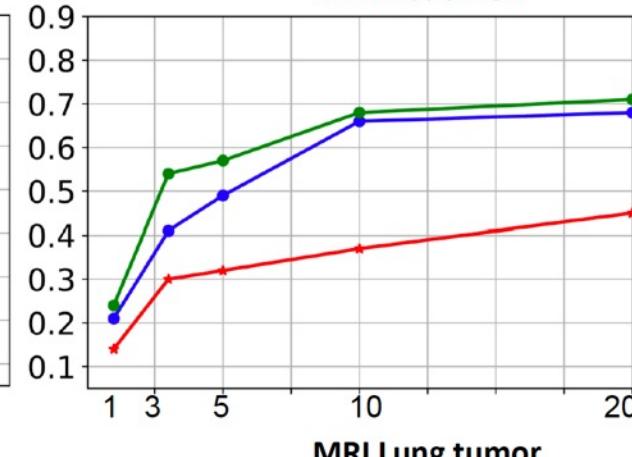


Image Foundation models used in MSK AI

- “One model to segment them all” approach simplifies clinical implementation and maintenance
- Clinical models at MSK using foundation models used for thorax, abdomen/pelvis, and brain

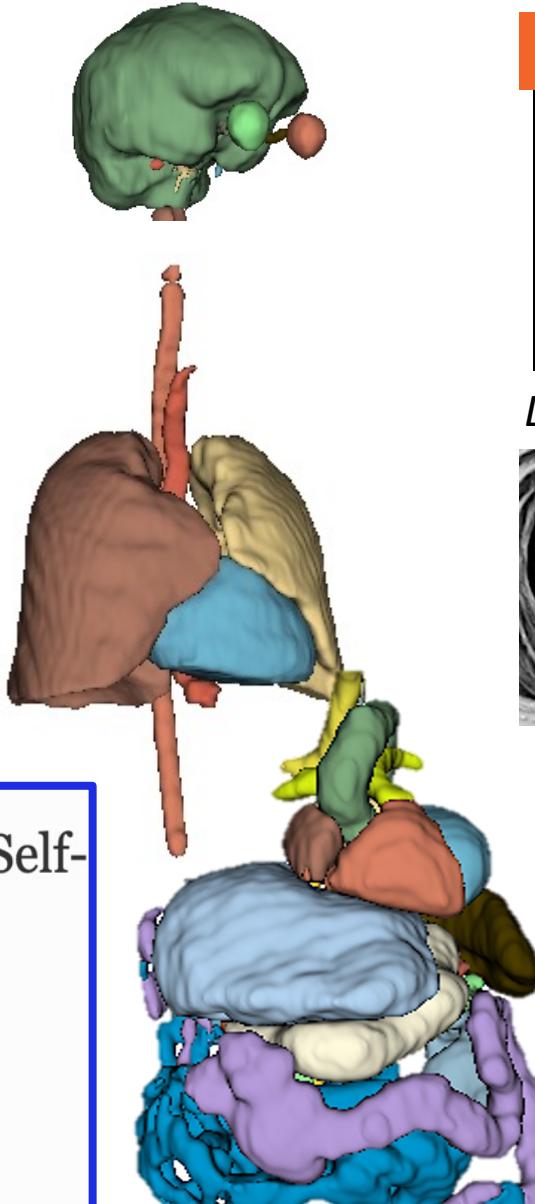
Self-supervised 3D Anatomy Segmentation Using Self-distilled Masked Image Transformer (SMIT)

[Jue Jiang](#), [Neelam Tyagi](#), [Kathryn Tringale](#), [Christopher Crane](#) & [Harini Veeraraghavan](#)

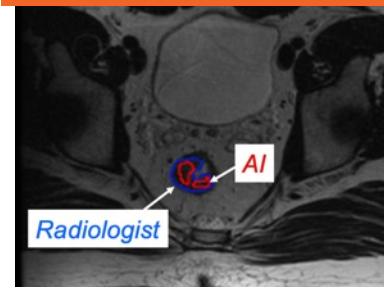
Conference paper | First Online: 16 September 2022

1287 Accesses

Part of the [Lecture Notes in Computer Science](#) book series (LNCS, volume 13434)

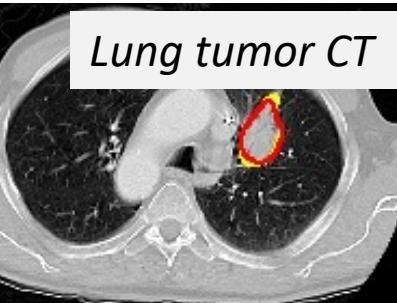


Rectal cancer MRI

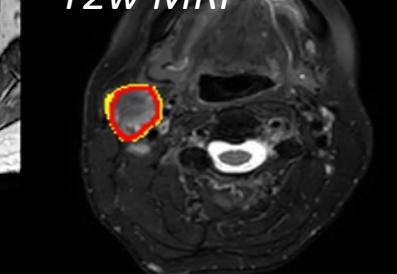


Lung tumor T2w MRI

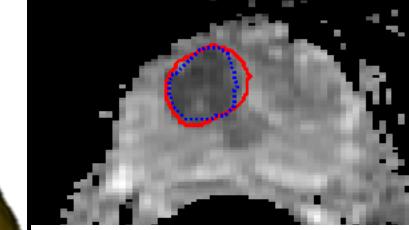
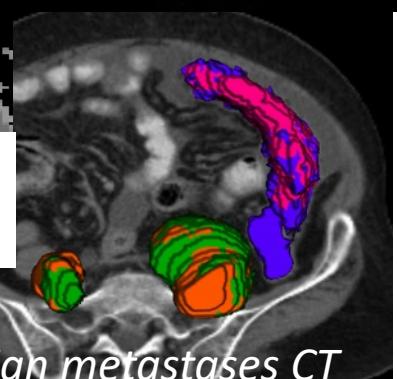
Lung tumor CT



H&N lymph node T2w MRI



Prostate Cancer ADC MRI



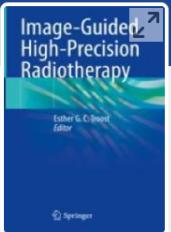
Mem
Cancer Center

Ovarian metastases CT

pyCERR library of AI segmentation models

Image modality	Site	Network architecture	Segmented Structures	Jupyter notebook
Planning CT Axial	Lung	DeepLab (V3+) https://doi.org/10.1016/j.phro.2020.05.009	Aorta, SVC, IVC, PA, LA, LV, RA, RV, atria, ventricles, and pericardium	https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Heart_OARs.ipynb
Planning CT Axial	Lung	Incremental MRRN doi.org/10.48550/arXiv.2005.13690	Right lung, left lung, heart, esophagus, cord, PBT	https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_OARs.ipynb
Planning T2w MR Axial	Prostate	DeepLab https://doi.org/10.1016/j.phro.2019.11.006	CTV, bladder, penile bulb, rectum, urethra foley, rectal spacer, large bowel	https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_MR_Prostate_OARs.ipynb
Planning CT Axial	Lung	SMIT https://doi.org/10.48550/arXiv.2205.10342	Lung tumor	https://github.com/cerr/pyCERR-Notebooks/blob/main/autosegment_CT_Lung_SMIT.ipynb
Planning T2w MR Axial (longitudinal)	Pancreas	ProRSeg https://doi.org/10.1002/mp.16527	Liver, large bowel , small bowel, duo-stomach Deformable vector field (first to last scan)	https://github.com/cerr/pyCERR-Notebooks/blob/main/auto_register_segment_MR_Pancreas_OARs.ipynb
Planning CT Axial	Head and neck	Nested Block Self Attention https://doi.org/10.48550/arXiv.1909.05054 DeepLab (V3+) https://doi.org/10.1088/1361-6560/ac4000	Left parotid, right parotid, left submandibular gland, right submandibular gland, mandible, spinal cord, brain stem, oral cavity	

AI GUIDED RT (AIGRT) IS THE FUTURE HERE

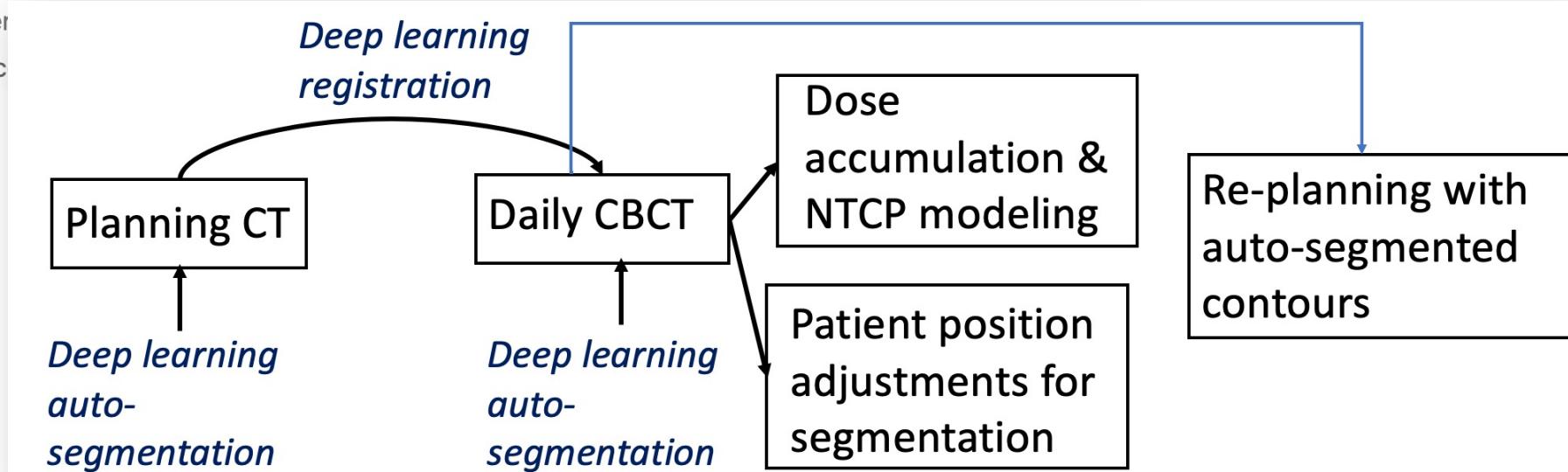


[Image-Guided High-Precision Radiotherapy](#) pp 249–267 | [Cite as](#)

Artificial Intelligence in Radiation Oncology: A Rapidly Evolving Picture

[Harini Veeraraghavan](#) & [Joseph O. Deasy](#)

Chapter
178 Ac



AI guided radiation treatment (AIGRT)

Memorial Sloan Kettering
Cancer Center