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e Evolution of radiotherapy (RT)
- Increased complexity of treatments

- Increased need for treatment verification

* Treatment verification: process of ensuring that the therapy is delivered as
planned

e Critical to prevent errors and ensure that patients receive the intended radiation dose to the
correct location

 However, accurate and thorough treatment verification poses a considerable time
and labor burden on healthcare professionals
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Artificial intelligence (Al)

* Crucial innovation with the potential to substantially reshape the RT workflow
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e Al's capability to process and analyze complex datasets rapidly and with high
precision offers a promising solution to streamline treatment verification
processes

e Mitigates the risk of human error but also contributes to a reduction in the time
and labor involved, ultimately leading to improvement in the quality of RT
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Al for treatment verification

e Literature review to explore the impact of Al
for RT treatment verification

e Literature search on PubMed:

» external beam radiotherapy/artificial
intelligence/error detection/treatment
verification/quality assurance/patient

monitoring

Records identified from PubMed
(n=763)

Records removed before screening:
Abstracts, articles not in English (n = 9)

|

Records screened
(n=754)

Records excluded (n = 464):
Mo photon EBRT (n = 291)
No Al (n = 68)

Mo access (n = 14)
Reviews, surveys, efc. (n = 91)

|

Records clustered
(n=280)

|

Categories/records excluded (n = 125):
Imaging (n = 15)
Segmentation (n = 61)
Flanning (n = 16)

Dose calculation (n = 9)
Toxicity/Ouicome prediction (n = 18)
Other (n = &)

Categories/records included (n = 165):

Quality assurance (n = 98)
Patient positioning (n = 10)
Infra-fraction tracking (n = 18)
In wivo verification (n = 13)
Adapfive radiotherapy (n = 26)
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Treatment verification categories
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* Quality assurance Qs
* Ensuring correct dose delivery by the linac, i.e. linac QA, dosimetry, plan QA and patient-
specific QA (PSQA)

* Patient positioning
* Positioning the patient before delivering the treatment

* Intra-fraction tracking
* Monitoring changes during delivery of treatment using kV imaging or other external devices

* |n vivo verification

* Monitoring changes during delivery of treatment using the MV treatment beam itself (e.g.
using the electronic portal imaging device (EPID))

 Adaptive radiotherapy (ART)

* Monitoring inter-fractional changes based on imaging and assessing these changes with the
purpose of adapting the treatment plan
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* Asked ChatGPT-4 to extract for each paper:

Goal

Al task performed (e.g. classification, regression, image-to-image translation)

Al model used (incl. if it was a machine learning (ML) or deep learning (DL) model)
Data used as Al input and output

Treatment site

Dataset size

Metrics used for evaluating model performance

Performance of the model

Conclusion

* Sped up reading tremendously, although checking ChatGPT output is crucial!
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Overall results

6‘;1) Articles per treatment verification category 50 b) Articles per Al type
B QA . ML
45 1 B Positioning 45 + Wwm DL
B Intra-fraction B Hybrid
40 1 mmm In vivo 40 1 mmm Transformer

s ART

Number of articles

2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
Year Year
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Al tasks per RT category

IH

* “Traditiona

Al tasks of classification and

regression are most prevalent for QA, patient
positioning and in vivo verification

* More complex Al tasks such as object
detection and image-to-image translation are

popular for intra-fraction tracking and ART

QA (n=98)

Image-to-image translation + Classification

Classification
Regression
Classification + Regression

Image-to-image translation

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Patient positioning (n=10)

Classification
Regression
Classification + Regression

Object detection

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Intra-fraction tracking (n=18)

Object detection
Regression
Classification

Image-to-image translation

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

In vivo verification (n=13)

Classification
Image-to-image translation

0

T T T T T T T T T T

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Adaptive radiotherapy (n=26)
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Image-to-image translation
Regression
Classification
Classification + Regression
Image-to-image translation + Segmentation

Segmentation + Regression
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Quality assurance

* Ensuring correct dose delivery by the linac, i.e.
linac QA, dosimetry, plan QA and patient-
specific QA (PSQA)

* Largest category

e Labor- and time-intensive workflows with
many manual checks and substantial amounts
of measurements

* Patient-specific QA (PSQA) most researched
sub-category

QA (n=98)

Classification

Regression
Classification + Regression
Image-to-image translation

Image-to-image translation + Classification

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Proportion of articles per QA type

Linac QA

Dosimetry

Plan QA

Patient-specific QA
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Linac QA

 Maintenance and monitoring of the linac’s performance to ensure consistent and
precise delivery of RT

Al for linac QA:

* Prediction: predicting linac output behavior, identifying potential deviations and enabling
preemptive corrections

* Automation: automating analysis of measured data and generating data to simplify
commissioning procedures
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Linac QA - Prediction

Predictive time-series modeling using artificial neural
networks for Linac beam symmetry: an empirical study

Qiongge Li"? and Maria F. Chan®

* Time-series modeling with artificial neural
networks (ANNs) and autoregressive
integrated moving average (ARIMA) models

* Predict linac output behavior based on previous
daily linac QA measurements

* Clustering-based machine learning methods
* Group daily QA parameters
e Set linac-specific limits and identify deviations

 Automated detection of operational anomalies in
linacs

* Facilitate data-driven decisions, allowing for
timely interventions and maintenance
responses that enhance treatment reliability
and safety

Predictive quality assurance of a linear accelerator based on
the machine performance check application using statistical
process control and ARIMA forecast modeling

Wayo Puyati? | Amnach Khawne® | Michael Barnes®* | Benjamin Zwan*®

Peter Greer®* | Todsaporn Fuangrod®

Issam El Naga® and Jim Irrer
Tim A. Ritter

John DeMarco

Machine learning for automated quality assurance in radiotherapy: A proof of
principle using EPID data description

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48103, USA
Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA

Department of Radiation Oncolegy, Cedars-5i

Jean M. Moran

Hania Al-Hallag

University of Chicago Radiation and Cellular Oncology, Chicagoe, IL 60637, USA
Jeremy Booth

Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
Grace Kim

University of California at San Diego, San Diege, CA 92093, USA
Ahmad Alkhatib

Karmanos Cancer Institute McLaren-Flint, Flint, MT 48532, USA
Richard Popple

University of Alabama at Birmingham, Birmingham, AL 35249, USA
Mario Perez

Royal North Shore Hospital, 5t Leonards, New South Wales 2063, Australia
Karl Farrey

University of Chicago Radiation and Cellular Oncology, Chicagoe, IL 60637, USA

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48103, USA

Medical Center, Los Angeles, California 90048, USA

Using KMeans Clustering to Evaluate and Alert for Deviations
of Linac Photon Beam Parameters

Narmada Chinnakannan, Punithavelan Nallamuthu*
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* Regression and implicit neural
representation models

* Predict beam data to alleviate the
amount of measurements that
need to be performed during
commissioning

 Machine and deep learning
models

* To automate analysis of Winston-
Lutz tests, detection of dead
detector elements, identify
phantom types

e Streamline QA processes and
contribute to the overall safety
and stability of RT

Maastro

Beam data modeling of linear accelerators (linacs) through machine
learning and its potential applications in fast and robust linac
commissioning and quality assurance

Wei Zhao*, Ishan Patil %, Bin Han*®, Yong

a,b,x

Yang“, Lei Xing **, Emil Schiiler

Modeling linear accelerator (Linac) beam data by implicit
neural representation learning for commissioning and
quality assurance applications

Lianli Liu' | Liyue Shen? | Yong Yang' | Emil Schiiler' | WeiZhao' |
Gordon Wetzstein? | Lei Xing"?
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DeepWL: Robust EPID based Winston-Lutz analysis using deep learning,
synthetic image generation and optical path-tracing

Michael John James Douglass >, James Alan Keal”

Efficient quality assurance for isocentric stability in stereotactic body

radiation therapy using machine learning

Sana Salahuddin’*© . Saeed Ahmad Buzdar' - Khalid Igbal? - Muhammad Adeel Azam** - Lidia Strigari®

Dead detector element detection
convolutional neural networks

Jon Box" | Adam Salazar? | DanJohnson® |

in flat panels using

Isaac Rutel’

An Al-based universal phantom analysis method based on XML-SVG
wireframes with novel functional object identifiers

Ahmad Sakaamini' @, Alexander Van Slyke', Julien Partouche’, Tianming Wu® and Rodney D Wiersma"*
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2D Dose Reconstruction by Artificial Neural Network for Pretreatment
Verification of IMRT Fields

Seied Rabie Mahdavi, PhD* Mohsen Bakhshandeh, PhD®, Aram Rostami, PhD** and
Ali Jabbary Arface, MSc*

A convolutional neural network model for EPID-based

non-transit dosimetry

Lucas Dal Bosco' | Xavier Franceries? | Blandine Romain® | Frangois Smekens® |
Frangois Husson® | Marie-Véronique Le Lann’

Deep learning-enabled EPID-based 3D dosimetry for dose
verification of step-and-shoot radiotherapy

* Al for conversion of
measured signals by a
dosimeter or other
measurement device into
dose values

* |Image-to-image translation

Mengyu Jia’ | YanWu' | YongYang | LeiWang | Cynthia Chuang | BinHan |

Lei Xing

Use of artificial neural network for pretreatment
verification of intensity modulation radiation
therapy fields

'SEIED RABIE MAHDAVI, 2ASIEH TAVAKOL, *MASTANEH SANEI, “SEYED HADI MOLANA, SFARSHID ARBABI,
SARAM ROSTAMI and "SOHRAB BARIMANI

Functional GAN (fGAN) Generator (G)
L] L]
[ ) CO nve rS I O n Of E P I D I m a ge S Radioluminescenc(e image o Prcditgfdx(:lgie map :....}_3...:;.(;........._.F.;:%r.c .....
i \ Encoder,

extractor,

Development of a time-resolved mirrorless
scintillation detector

to planar dose distributions

=

Wonjoong Cheon'?, Hyunuk Jung'?, Moonhee Lee', Jinhyeop Lee', Sung Jin Kim*,
Sungkoo Cho®, Youngyih Hangy'*#

Development of a dosimeter prototype with machine learning based
3-D dose reconstruction capabilities

hared

Gy(x,¢,)
Discriminator (D)
G1(x,cy) or y,

F‘

e Similar approach for other
dosimetry systems

I

Reconstructed image Co Groundtruth dose map H
G2(G1(x,cy). co) Yn H 1 ¢4

Trainable layers

G M Finneman' ®, O H Eichhorn', N R Meskell', T W Caplice', AD Benson', A S Abu-Halawa', P\ Pretrained layers /i

G L Ademoski', A CClark', D S Gayer', KN Hendrickson', P A Debbins’, Y Onel’, A S Ayan’©® and

U Akgun™*
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* |Improve accuracy of

measured doses, thereby
enhancing accuracy of RT

Calibration of the EBT3 Gafchromic Film Using HNN
Deep Learning

Liyun Chang®,' Shyh-An Yeh (,"”* Sheng-Yow Ho(,>* Hueisch-Jy Ding(®,"
67

Pang-Yu Chen ,* and Tsair-Fwu Lee
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Target domain labels: ¢; =[1,0, ...,

Source domain label: ¢y =[0, ..., 0, ...,

0],¢2=10,1,0,...,0], ...,CN
0] Domain label: ¢,

Mengyu Jia | Yong Yang |

Deep learning-augmented radioluminescence imaging for
radiotherapy dose verification

YanWu | XiaomengLi | LeiXing | LeiWang
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Plan QA

* Reviewing and verifying the
accuracy and completeness
of a patient’s RT treatment
plan

e Clustering and supervised
ML models

* To distinguish between
acceptable and erroneous
treatment plans

* Bayesian networks to
indicate the likelihood of
errors in RT plans

Guided undersampling classification for automated radiation therapy quality
assurance of prostate cancer treatment
‘W. Eric Brown
104 CIUStE r 9 Cluster 7 L] Department of Industrial and Sysems Engineering, Texas A&M University, College Station, TX 77843
| RS Cluster 1 Kisuk Sung
0E{ w. Fr - m- « Cl 2 Samsung Life Insurance, Seoul 06620, Korea
L] usler CI L.ESTQI‘ 3 Dionne M. Aleman

= DD m - " | D. of ical & Industrial Engineering, University of Taronto, Toronto, Ontario M5S 3G8, Canada
B i | Erick Moreno-Centeno®
(il | Department of Industrial and Systems Engineering, Tevas A&M University, College Station, TX 77843
E‘ D4 | Thomas G. Purdie
- | Department of Medical Imaging & Physics, Princess Margaret Cancer Cente, University Health Nensork {UHN), Toronta, Ontario
] MG 2M9, Canada " s .
Eas) Cluster4 oaarmenarraiil SUPART: supervised projective adapted resonance theory for
£ | Chris J. Mcintosh . . .
& 28 = saummen et gUtOMatic quality assurance approval of radiotherapy treatment

251 | plans

o . Cluster5 Cluster 6 © |

-30 | e |

L - | Hootan Kamran' @, Dionne M Aleman' ®, Chris McIntosh” and Thomas G Purdie’

28 @0 6 A0 405 00 OF 10 15 20 25 30 35 40 45
Printipal Componant 2

Augmenting Quality Assurance Measures in
Treatment Review with Machine Learning in

& Cluster Centroid = Cluster 1 Data Paint @ Cluster 2 Data Point Cluster 3 Data Point Clugter 4 Data Paind ‘
= Clusier 5 Dala Point Clusier § Data Point Cluster ¥ Oata Pojnt = Clister B Oata Paind

Radiation Oncology

Towards the development of an error checker
for radiotherapy treatment plans: a preliminary
study

Malvika Pillai, PhD,*"* John W. Shumway, MD,""
Karthik Adapa, MBBS, MPH, PhD,>* John Dooley, BA,” Ross McGurk, PhD,”
Lukasz M. Mazur, PhD,” Shiva K. Das, PhD,” and Bhishamijit S. Chera, MD"

Fatemeh Azmandian', David Kaeli', Jennifer G Dy,
Elizabeth Hutchinson?, Marek Ancukiewicz?, Andrzej Niemierko?
and Steve B .]iangu

Characterization of a Bayesian network-based radiotherapy plan verification
model

Samuel M. H. Luk,? Juergen Meyer, Lori A. Young, Ning Cao, and Eric C. Ford
Department of Radiation Oncology, University of Washington Medical Center; Seattle, WA 98195-6043, USA

Mark H. Phillips
Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA 98195-6043, USA
Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98019-4714, USA

Alan M. Kalet
D of Radigtion Qncolooy. Lniversity of Waghi Medical Cepter; Seattle, WA 981956043, USA

Development and Validation of a Bayesian
Network Method to Detect External Beam
Radiation Therapy Physician Order Errors
Xiao Chang, PhD,* H. Harold Li, PhD,* Alan M. Kalet, PhD,’
and Deshan Yang, PhD” Automatic quality assurance of
radiotherapy treatment plans
using Bayesian networks: A
multi-institutional study

Bayesian network models for error
detection in radiotherapy plans

Petros Kalendralis®!, Samuel M. H. Luk®, Richard Canters®,
Denis Eyssen®, Ana Vaniqui’, Cecile Wolfs*, Lars Murrer”,
Wouter van Elmpt?, Alan M. Kalet?®, Andre Dekker'*,

Johan van Soest™*, Rianne Fijten®, Catharina M. L. Zegers*
and Inigo Bermejo**

Alan M Kalet!2, John H Gennari?, Eric C Ford' and
Mark H Phillips!*
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Explainable Al (XAl) for Plan QA

e XAl: methods and
techniques that provide
human-understandable
explanations for the
decisions and actions taken
by Al systems

* Shapley additive explanation
(SHAP)

* Local interpretable model-

' ' . ' Low
-10 -5 5 10
SHAP value (impact on model output)

High
PTV| ADggy,  +  =*pubipdle - R 1V | ans-. [
Optic_Chiasm | ADy - =oigamy - optic_chiasm | apy, NG
PTV-Brainstem | Ad i3 PTV-Brainstem | Ad _
PTV-Optic Chiasm | Ad »—edh g PTV-Optic Chiasm | Ad | — |
PTV-Cochlea_L | Ad - =EE = PTVv-Cochlea_L | ad [N
PTV-Cochlea_R | Ad g % PTV-Cochlea R | ad [
Brainstem | ADmax "'-‘ & Brainstem | ADmax -
PTV Volume S PTV Volume [N
Cochlea_L | ADpax - Cochlea L | ADysx I
Cochlea_R | ADuax [ Cochlea R | ADwax [
[

0.0 05 Lo 1s 200 25 30 35
mean(|SHAP value|) (average impact on model output magnitude)

Boyd McCurdy *5"

Machine learning for dose-volume histogram based clinical
decision-making support system in radiation therapy plans for brain tumors

Pawel Siciarz ™™, Salem Alfaifi®, Eric Van Uytven , Shrinivas Rathod © 4. Rashmi Koul “,

Understanding machine learning classifier decisions in automated
radiotherapy quality assurance

Yunsheng Chen', Dionne M Aleman', Thomas G Purdie”*® and Chris McIntosh™’

PlanMl
agnostic explanations (LIME)
g Daose [
. & I
* Feature selection
2 Fractions [
Feature Engineering for Interpretable Machine Learning for Quality Assurance in Beams [
Radiation Oncology ContPaints

Malvika Pillai*, Karthik Adapa®®, John W Shumway®, John Dooley”, Shiva K Das”, Bhishamjit S Chera®,
Lukasz Mazur®

LIME Explanations of Prostate Plan XXX
Prediction = Erroneous
Classitier Probability = 0.800 | Local Approximation = 0.600

Average Effect in %
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Patient-specific Quality Assurance (PSQA)

* Ensuring that each treatment is tailored to the individual patient's anatomy and
tumor characteristics and that the treatment plan is deliverable by the linac

e Al for PSQA:

* Error prediction: verifying the machine delivery parameters by predicting potential deviations
or errors in machine parameter values before they occur

» Error classification: analysis of measured dose distributions and/or dose comparison images
with the aim of detecting and identifying errors

* Virtual QA: predicting dose deviations before performing PSQA measurements to facilitate
selection of plans that need measurements

% Maastricht University @ Maastricht UMC+
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PSQA - Error prediction

* Regression machine learning models
* To predict discrepancies between planned £
and delivered parameter values based on log &
files :
* Generative models
 To predict MLC aperture and MUs and verify
the treatment plan
;w; () TPS ;w: (k) Prediction ;oug (n Difference
. Irregular ) _ -
150;— : . 150 : N 150;— n

plan via deep learning

Jiawei Fan"’, Lei Xing', Ming Ma', Weigang Hu® and Yong Yang'

Verification of the machine delivery parameters of a treatment

B
2009 = 1254 =
1754 e @ Planned -15.04 ¢ ® Planned
O Delivered -17.54 O Delivered
15.07 X Predicted 200 X Predicted
1264 ¢ 2251 o
1004 25.01
75 2751 = ® ‘%
’ -30.0 - o % F
5.01 -32.54 Q g
2.5 a 2 -35.07 « e 2
» 4
0.0 c « ? -37.5 -
10 11 12 13 14 15 16 17 46 47 48 49 50 51 52 53 54 55 56
Control Paoint Control Point
A machine learning approach to the
accurate prediction of multi-leaf collimator
1 positional errors
Joel N K Carlson!2, Jong Min Park?343, So-Yeon Park2349,
Jong In Park!?, Yunseok Choi®’ and Sung-Joon Ye!23436
Prediction of the individual multileaf collimator positional deviations during
0 dynamic IMRT delivery priori with artificial neural network
Alexander F. I. Osman®
Deparment of Radiarion Oncology, American University of Beirur Medical Center, Riad EL-Solh, 1107 2020, Beirus, Lebanon
Deparmnent of Medical Physics, Al-Neelain University, Khartoum 11121, Sudan
Nabil M. Maale]
Deparmnent of Physics, King Fahd University of Petroleunt and Minerals, Dhahran 31261, Saudi Arabia
Kunnanchath Jayesh
Department of Radiation Oncology, American Hospital Dubai, Dubai, United Arab Emirates
-1 A tool for patient-specific prediction of delivery discrepancies in machine

parameters using trajectory log files

Kai-Cheng Chuang
Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
Medical Physics Graduate Program, Duke Kunshan University, Kunshan, China

William Giles and Justus Adamson®
Department of Radiation Oncelogy, Duke University Medical Center, Durham, North Carolina, USA
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. W. ArtChaovalitwongse | Error Detection in Intensity-Modulated Radiation
* To detect MLC and/or MU errors in Deparament o Fadoioss Unnersiy o wasirsror. | Therapy Quality Assurance Using Radiomic

Deep learning for patient-specific quality assurance: Identifying errors in
radiotherapy delivery by radiomic analysis of gamma images with
convolutional neural networks

o gne g Matthew J. Nyflot™
[re— Deparment of Radiarion Oncology, University of Washingion, Seanle, WA, USA
Deparmment of Radiology, University of Washingion, Searttle, WA, USA

Phawis Thammasorn
Deparment of Industrial Engineering, University of Arkansas, Fayerteville, AR, USA

o ML and DL models Landon S. Wootton and Eric C. Ford

Deparment of Radiation Oncology, University of Washington, Seanle, WA, USA

pre-treatment measurements
* Various studies using different Al

Analysis of Gamma Distributions

Landon S. Wootton, PhD,* Matthew J. Nyflot, PhD,*'
W. Art Chaovalitwongse, PhD,"" and Eric Ford, PhD*

m Od el S an d |n p ut d at a Error detection using a convolutional neural network with dose difference

maps in patient-specific quality assurance for volumetric modulated arc

therapy

Yuto Kimura®®, Noriyuki Kadoya™”, Seiji Tomori®®, Yohei Oku®, Keiichi Jingu®

MLC transmission

B

Dose error=
Difference
Reference - Histogram )
- g MU scaling error=

Feature
extraction

Error detection model developed using a multi-task
convolutional neural network in patient-specific quality
assurance for volumetric-modulated arc therapy

Yuto Kimura"? | Noriyuki Kadoya' | Yohei Oku? | Tomohiro Kajikawa™*
Seiji Tomori"* | Keiichi Jingu'

Measurement |

Leaf bank error +

0

Single leaf error+

What is the optimal input information for deep learning-based
pre-treatment error identification in radiotherapy?

Cecile J.A. Wolfs ', Frank Verhaegen

Source size error

|
|
e |
)
)
]

M A ",

Error detection and classification in patient-specific IMRT QA with dual neural
networks
Nicholas J. Potter*, Karl Mund*, Jacqueline M. Andreozzi, Jonathan G. Li, Chihray Liu, and

Guanghua Yan®
Department of Radiation Oncology, University of Florida, Gainesville, FL, USA

Error detection using a multi-channel hybrid network with a
low-resolution detector in patient-specific quality
assurance

Bing Yan"? | Jun Shi® | Xudong Xue* | HuPeng' | Aidong Wu? |
Xiao Wang® | Chi Ma®

<
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MEASURED

Deep nets vs expert designed features in medical physics: An IMRT QA case
study

Yannet Interian* and Vincent Rideout*
M in Analytics Program, University of San Francisco, San Francisco, CA, USA

Vasant P. Keamey, Efstathios Gennatas, Olivier Morin, Joey Cheung, Timothy Solberg, and
Gilmer Valdes® _ __ _ —
Deparmment of Radiation Oncology, U Patient-specific quality assurance prediction models based

on machine learning for novel dual-layered MLC linac

e ML and DL model
an O e S Heling Zhu | Qizhen Zhu | Zhiqun Wang | Bo Yang | Wenjun Zhang | Jie Qiu

e To predict gamma pass rates or other Machine Learning for Patient-Specific Quality
. . Assurance of VMAT: Prediction and Classification
dose evaluation metrics

Accuracy

* To predict dose evaluation metrics and [l 1, bs Le Wang, 1o, ¥ile zhang, ks, Lu Liv, Ms.”

. . : Pretreatment patient-specific quality
d Ruijie Yang, PhD
ClaSSIfy dS pass or fail e assurance prediction based on 1D complexity

metrics and 3D planning dose: classification,

* Todi rectly classify dS pPass or fail gamma passing rates, and DVH metrics
° TO p red ict a m ea S u red d Ose O r. ga m m a - . _ . Liyuan Chen'!, Huanli Lua", Shi Li', XiaTan', Bin Feng', Xin Yang', YingWang' and Fu Jin
d . b . Predicting VMAT patient-specific QA results using a support vector
Istribution classifier trained on treatment plan characteristics and linac QC
s, metrics
- fﬂ Dal A Granville"*®, Justin G Sutherland">*©, Jason G Belec? and Daniel ] La Russa’>*
Efficient dose—volume histogram-based pretreatment

- ; °: patient-specific quality assurance methodology with

combined deep learning and machine learning models for

volumetric modulated arc radiotherapy
| Changfei Gong'? | Kecheng Zhu? | ChengyinLin? | Ce Han? | Zhongjie Lu® |
- . . - - Yuanhua Chen® | Changhui Yu* | Ligiao Hou* | Yonggiang Zhou? | Jinling Yi? |

© L A mathematical framework for virtual IMRT QA using machine learning| |vaca? | xiaojun Xiang' | Congying Xie2* | Xiance Jin?®

G. Valdes,®® R. Scheuermann,® C. Y. Hung, A. Olszanski, M. Bellerive, and T. D. Solberg A synthe5|ze_d gamma dls_trlbutlon-bas_ed patient-specific
L Radiation Oncology Department, Perelman Center for Advanced Medicine, University of Pennsylvania, VMAT QA using a generatlve adversarial network

Philadelphia, Pennsylvania 19123
L5 L L L L J Takaaki Matsuura™? | Daisuke Kawahara? | Akito Saito® | Kiyoshi Yamada' |

] S ® ® 0
PREDICTED Shuichi Ozawa’? | Yasushi Nagata'?
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 Due to large interest in virtual .

QA, research is emerging
e Multi-centric validation

* Implementation in clinical
practice

Machine [
Learning
Model

Plan Complexity

Initial
Plan

QA-optimized
Plan

QA-based
Optimization
using Machine
Learning
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in radiotherapy

Michaél Claessens ™™

Multi-institutional generalizability of a plan complexity machine learning
model for predicting pre-treatment quality assurance results

*, Geert De Kerf?, Verdi Vanreusel 0:¢ Igabelle Mollaert?,
Victor Hernandez “, Jordi Saez ®, Ntria Jornet®, Dirk Verellen ™"

validation

Joseph O. Deasy? | Timothy D. Solberg™?

IMRT QA using machine learning: A multi-institutional

Gilmer Valdes'®® | Maria F. Chan®® | Seng Boh Lim® | Ryan Scheuermann® |

LX)
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radiotherapy patient specific quality assurance process

Stefano Tomatis”, Daniele Loiacono ', Marta Scorsetti“'b, Pietro Mancosu "

Multicentric evaluation of a machine learning model to streamline the

Nicola Lambri *", Victor Hernandez , Jordi Sdez ', Marco Pelizzoli ¢, Sara Parabicoli ™,

Prospective Clinical Validation of Virtual
Patient-Specific Quality Assurance of

Volumetric Modulated Arc Therapy Radiation

Therapy Plans

Phillip D.H. Wall, PhD, MS, Emily Hirata, PhD, Olivier Morin, PhD, Gilmer Valdes, PhD, and Alon Witztu

Quality assurance-based optimization (QAO): Towards improving
patient-specific quality assurance in volumetric modulated arc therapy
plans using machine learning

Phillip D.H. Wall™", Jonas D. Fontenot™"

<

A TPS integrated machine learning tool for predicting patient-specific
quality assurance outcomes in volumetric-modulated arc therapy

Caroline Noblet , Mathis Maunet, Marie Duthy, Frédéric Coste, Matthieu Moreau
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Patient positioning

e Positioning the patient before
delivering the treatment

* Smallest category

Patient positioning (n=10)

Classification

Regression

Classification + Regression

Object detection

T T T

I
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* Alis not often used yet to optimize

and assist

* Early application of Al in RT

e Artificial neural networks to
evaluate portal set-up images

VN

Int. J. Radiation Oncology Biol. Phys., Vol 435, No. 1. pp. 215-22§. 1999
Copyright © 1999 Elsevier Scien®dg Inc

Printed in the USA. All rights reserved

0360-3016/99/$—see front matter

el
ELSEVIER PIT S0360-3016(99)00136-4

PHYSICS CONTRIBUTION

COMPUTER-ASSISTED DECISION MAKING IN PORTAL VERIFICATION—
OPTIMIZATION OF THE NEURAL NETWORK APPROACH

Konrap Leszczynskr, Pa.D.. 7t DanteL Provost, PH.D..* Ranparr Bisserr, M.D..T
Scott CosBy, M.Sc..* anp Susanx Bovko. B.A. A.C.(T)*

*Northeastern Ontario Regional Cancer Centre, Sudbury. Ontario. Canada P3E 571: "Department of Radiology, University of Ottawa.
Ottawa, Ontario, Canada: and ‘Department of Physics, Laurentian University, Ontario. Canada
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Patient positioning

* Different applications

* Object (positioning device) detection

* Detection of vertebral misalignment

e Surface guidance

Machine learning-based treatment couch parameter prediction in support

of surface guided radiation therapy

Geert De Kerf™", Michaél Claessens ™", Isabelle Mollaert®, Wim Vingerhoed %, Dirk Verellen®

b

Proof-of-concept study of artificial intelligence-assisted
review of CBCT image guidance

Technical Note: Deep Learning approach for automatic detection and
identification of patient positioning devices for radiation therapy
David H. Thomas®, Leah K. Schubert, Yevgeniy Vinogradskiy, Sameer Nath,

Brian Kavanagh, Moyed Miften, and Bernard Jones
Department of Radiation Oncology, University of Colorado, Aurora, CO, USA

Jack Neylon” | Dishane C. Luximon' | Timothy Ritter? | James M. Lamb’ Development and multi-institutional validation of a b 1 | - - —— Tvall - :
Results of an Artificial Intelligence—Based i | ot K to dotect vertebral bod eve opfnent and mtennstlt.utlo.na validation of an
Image Review Svstem to Detect Patient convolutional neural network to detect vertebral body |automatic vertebral-body misalignment error detector for

K 9. Y . e = mis-alignments in 2D x-ray setup images cone-beam CT-guided radiotherapy
Misalignment Errors in a Multi-institutional
Database of Cone Beam Computed Rachel Petragallo’ | Pascal Bertram? | Per Halvorsen® | lleana Iftimia® | zisl:]al:epct. L”x::"?": \‘( T_im::;y ka:_rj “ 'jmhmac?elfsz 1‘ ‘J;hn _N?:°:1 1‘
. . ae . L . . achel Petragallo asin Abdulkadir ohn Charters aniel A. Low
Tomography—GUIded Radiation Therapy Dan-lel A Low' | Olivier I\Il.c:rln4 | Ganesh Narayanas.amyS. | Dan!el L. Saenz® | James M. Lamb'
. i i : Kevinraj N. Sukumar’ | Gilmer Valdes* | Lauren Weinstein® | Michelle C. Wells—
Dishane C. Luximon, MS,* Jack Neylon, PhD,* Timothy Ritter, PhD,' Nzhde Agazaryan, PhD,” John V. Hegde,
Michael L. Steinberg, MD,” Daniel A. Low, PhD,” and James M. Lamb, PhD* Benjamin P. Ziemer’ | James M. Lamb’
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Intra-fraction tracking

 Monitoring changes during delivery of
treatment using kV imaging or other external
devices

Intra-fraction tracking (n=18)

 Object detection tasks

 Monitoring of the tumor or an anatomical target
during the delivery of radiation

Object detection
Regression
Classification

Image-to-image translation

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
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Anatomical monitoring

* Tracking methods evolved over time
e External markers

e Fiducial (implanted) markers

* Markerless

Marcus Isaksson and Joakim Jalden
Department of Electrical Engineering, Stanford University, Stanford, California 94036

Martin J. Murphy®

Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298

On using an adaptive neural network to predict lung tumor motion
during respiration for radiotherapy applications

rh

Generate tracking windows
using previous locations

Perform sliding window
classification using CNN

-

Calculate the centroid of the
positive regions

Export the marker
locations to the
positioning device —

Lili Huang'? |
Stefanie Corradini’
Marco Riboldi?

Simultaneous object detection and segmentation
for patient-specific markerless lung tumor tracking
in simulated radiographs with deep learning

Christopher Kurz' |
Maximilian Niyazi' |

Philipp Freislederer' | Farkhad Manapov' |

A deep learning framework for automatic detection of arbitrarily shaped
fiducial markers in intrafraction fluoroscopic images

Adam Mylonas, and Paul J. Keall

Faculty of Medicine and Health, ACRF Image X Institute, The University of Sydney, Sydney, NSW, Australia

Jeremy T. Booth

Royal North Shore Hospital, Northern Sydney Cancer Centre, St Le A feaSIblllty Stu dy on the develop ment and use Of a deep |earn Ing

Chun-Chien Shieh

Faculty of Medicine and Health, ACRF Image X Institute, The Unive| mo de' tO a Uto m ate real_tl me mon |t0 rl ng Of tu mor pOSItIO nan d

Thomas Eade

Royal North Shore Hospital, Northern Sydney Cancer Centre, St Leq

Per Rugaard Poulsen

Department of Oncology, Aarhus University Hospital, 8000 Aarhus,

Doan Trang Nguyen®

assessment of interfraction fiducial marker migration in prostate
radiotherapy patients”

Ryan Motley"’ ©, Prabhakar Ramachandran'© and Andrew Fielding'

Faculty of Medicine and Health, ACRF Image X Institute, The University of Sydney, Sydney, NSW, Australia |

School of Biomedical Engineering, University of Techn:

Claus Belka'>* | Guillaume Landry' |

Deep learning-based markerless lung tumor tracking in

stereotactic radiotherapy using Siamese networks

Max Dahele’ | Ward van Rooij' | Ben Slotman' |

| Wilko F. A. R. Verbakel’

Dragos Grama' |
Deepak K. Gupta?

Deep Learning model for markerless tracking in spinal SBRT

Toon Roggen®, Mislav Bobic, Nasim Givehchi, Stefan G. Scheib

Evaluation of deep learning based implanted fiducial markers
tracking in pancreatic cancer patients

Abdella M Ahmed"’ ®, Maegan Gargett"’©, Levi Madden"* ©, Adam Mylonas’, Danielle Chrystall"*,
Ryan Brown', Adam Briggs’, Trang Nguyen’®, Paul Keall’, Andrew Kneebone'**, George Hruby* and
Jeremy Booth"*
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Other tracking applications

e Surface guidance

Automatic prediction model for online diaphragm motion tracking
based on optical surface monitoring by machine learning

Zhenhui Dai'#, Qiang He', Lin Zhu', Bailin Zhang', Huaizhi Jin', Geng Yang', Chunya Cai', Xiang Tan',
Wanwei Jian', Yao Chen’, Hua Zhang’, Jian Wu’, Xuetao Wanal

e Selection of ROI, correlation between internal

and external movement

* |mage improvement

* kVimage quality, volumetric imaging, image

decomposition

 Patient movement

* Monitoring facial expressions

Treatment Room Treatment Control Room

Real-time
video
streaming

Deep Learning

Patient's
Facial
Monitaring
with

I

Comfortable

Ur table

" e "
- Visual and Sound Alarm -
& o

Attention

Radiation therapy technologists

3DCT

B-spline interpolation

Deep-learning based surface region selection for deep inspiration
breath hold (DIBH) monitoring in left breast cancer radiotherapy

Haibin Chen'*®, Mingli Chen’, Weiguo Lu*®, Bo Zhao?, Steve Jiang’, Linghong Zhou', Nathan Kim?,
Ann Spangler®, Asal Rahimi’, Xin Zhen' and Xuejun Gu*

image-to-image
translation
cGAN

2D raw DRR 2D RealDRR

. .
o

ray-tracing
Evuxels

RealDRR - Rendering of realistic digitally reconstructed radiographs )
using locally trained image-to-image translation =

Jennifer Dhont *>*, Dirk Verellen %<, Isabelle Mollaert ¢, Verdi Vanreusel ¢, Jef Vandemeulebroucke *°

Gheck for

and Xiaofeng Yang"”

Deep learning-based real-time volumetric imaging for lung
stereotactic body radiation therapy: a proof of concept study

Yang Lei** @, Zhen Tian"’, Tonghe Wang', Kristin Higgins', Jetfrey D Bradley’, Walter ] Curran’, Tian Liu’

Patient specific prior cross attention for kV decomposition
in paraspinal motion tracking

Xiuxiu He' | Weixing Cai' | FeifeiLi' | QiyongFan' | Pengpeng Zhang' |
John J. Cuaron? | Laural. Cerviio' | Jean M. Moran® | XiangLi' | Tianfang Li’

Facial expression monitoring system for predicting patient’s
sudden movement during radiotherapy using deep learning

Kwang Hyeon Kim | Kyeongyun Park | Haksoo Kim | Byungdu Jo | Sang Hee Ahn |

I . 3 . .
. Chankyu Kim | Myeongsoo Kim | Tae Ho Kim | Se Byeong Lee | Dongho Shin | (!/ Maastricht UMC+
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In vivo verification

 Monitoring changes during delivery of
treatment using the MV treatment beam itself
(e.g. using the electronic portal imaging device Reference Acquired Comparison

e C(lassification tasks:

* Error detection: aim is to detect whether or not any
erroris present In vivo verification (n=13)

* Erroridentification: aim is to detect which type of F Classification
error |S present Image-to-image translation

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

* Image-to-image translation

 |mprove or convert (dose) measurements performed
during treatment

b‘"ﬂ Maastricht University (!I Maastricht UMC+
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In vivo verification — Error detection

e Detect whether or not
an error is present

* Early applications in
portal verification

 Hidden Markov models
and clustering

* To identify anatomical
changes

e Recurrent neural

networks
e To detect errors in real

time during a treatment
fraction

Application of a fuzzy pattern classifier to decision making in
portal verification of radiotherapy

Konrad LeszezynskiT1§. Scott Cosby, Randall Bissett§. Daniel Provost.
Susan Boyko, Stephen Loose? and Eding Mvilongot

A feasibility study of treatment verification using EPID
cine images for hypofractionated lung radiotherapy”

Xiaoli Tang'?, Tong Lin'" and Steve Jiang'
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A recurrent neural network for rapid detection of delivery errors during
real-time portal dosimetry

James L. Bedford , Ian M. Hanson '
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Classification of changes occurring in lung patient during radiotherapy using

relative y analysis and hidden Markov models

Nicolas Varfalvy
Département de Radio-oncelogie, CHU de Québec, 11 Céte du Palais, Québec, QC, Canada

Ophelie Piron

Département de Radio-oncelogie, CHU de Québec, 11 Cote du Palais, Québec, QC, Canada

Physics Department, Universiteé Laval, Québec City, QC, Canada

Marc Frangois Cyr

Département de Radio-oncelogie, Centre Integre de santé et de services sociaux du Bas-Saint-Laurent, 150, avenue Rouleau,
Rimouski, QC, Canada

Anne Dagnault
Département de Radio-oncelegie, CHU de Québec, 11 Cote du Palais, Québec, QC, Canada

Louis Archambault

Département de

Physies Deparm| EXternal validation of a hidden Markov model for gamma-based classification

of anatomical changes in lung cancer patients using EPID dosimetry
Cecile J. A. Wolts®)

The Netheriands

Nicolas Vartalvy
Diépartement de Radio-oncologie, CHU de Québec, Québec, 0C, Canada

Richard A. M. Canters, Sebastiaan M. J.J. G. Nijsten, and Djoya Hattu

The Netheriands

Louis Archambault*
Département de Radio-oncologie, CHU de Québec, Québec, OC, Canada
Physics Department, Université Laval, Québec City, OC, Canada

Frank Verhaegen®
o Podiarion Cncalac (4 | GROW Cobaaldor fincal Liniversies Medical "

Establishing action threshold for change in patient anatomy using EPID

gamma analysis and PTV coverage for head and neck radiotherapy treatment

Ophélie Piron®, Nicolas Varfalvy, and Louis Archambault
Department de Radio-oncologie, CHU de Quebec, 11 Cote du Palais, Quebec, QC, Canada
Université Laval, 2325 Rue de I"Université, Ville de Québee, QC G1V 0A6, Canada
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In vivo verification — Error identification

Determine which error
occurred

Convolutional neural
networks

* To classify error type and
magnitude
Autoencoder U-Net

* To distinguish between
generic and plan-specific
deviations

Gamma map

Deep learning-based tools to distinguish plan-specific
from generic deviations in EPID-based in vivo dosimetry

Igor Olaciregui-Ruiz | Rita Simdes | Sonke Jan-Jakob
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Systematic < 1imm ) Analysis of EPID Transmission
MLC shift >1mm J Fluence Maps Using Machine
Random Average<1mm | Learning Models and CNN for
MLC shift Average > 1mm Identifying Position Errors in the

Identification of treatment error types for lung cancer patients using

convolutional neural networks and EPID dosimetry

Treatment of GO Patients

Guyu Dai'", Xiangbin Zhang'", Wenjie Liu®, Zhibin Li", Guangyu Wang’, Yaxin Liu’,
Qing Xiao', Lian Duan’, Jing Li’, Xinyu Song’, Guangjun Li"* and Sen Bai™

Cecile J.A. Wolfs, Richard A.M. Canters, Frank Verhaegen *

Radiomics analysis of EPID measurements for patient positioning error
detection in thyroid associated ophthalmopathy radiotherapy

A 3D transfer learning approach foridentifying multiple
simultaneous errors during radiotherapy

Kars van den Berg', Cecile ] A Wolfs™" ® and Frank Verhaegen®

Kiangbin Zhang ', Guyu Dai ', Renming Zhong, Li Zhou, Qing Xiao, Xuetao Wang, Jialu Lai,
Uianling Zhao, Guangjun Li , Sen Bai
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Adaptive radiotherapy (ART)

 Monitoring inter-fractional changes based on imaging and assessing these
changes with the purpose of adapting the treatment plan

Adaptive radiotherapy (n=26)

* Image-to-image translation tasks
* CBCT to CT conversion

Image-to-image translation
Regression
Classification

Classification + Regression

* Regression and classification tasks
* Prediction of anatomical changes

Image-to-image translation + Segmentation

Segmentation + Regression
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Proportion of articles per Al task (%)
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Improve image quality for

improved assessment of changes

CycleGAN
* To convert CBCT to CT

Other applications

* CBCT correction, image registration

A convolutional neural network for estimating cone-beam CT
intensity deviations from virtual CT projections

Branimir Rusanov'
Mahsheed Sabet"”

,Martin A Ebert"” @, Godfrey Mukwada’, Ghulam Mubashar Hassan' and

Seqg2Morph: A deep learning deformable image registration
algorithm for longitudinal imaging studies and adaptive

radiotherapy

Donghoon Lee | Sadegh Alam | JueJiang | LauraCervino | Yu-ChiHu |

Pengpeng Zhang

Dosimetric assessment of patient dose calculation on a
deep learning-based synthesized computed tomography
image for adaptive radiotherapy

Olga M. Dona Lemus’ | Yi-Fang Wang' | FionaLi' | Sachin Jambawalikar? |

David P. Horowitz"* | Yuanguang Xu' | Cheng-Shie Wuu'
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CBCT correction using a cycle-consistent generative adversarial
network and unpaired training to enable photon and proton dose
calculation

Generating synthesized computed tomography (CT) from
cone-beam computed tomography (CBCT) using CycleGAN

Christopher Kurz">*’, Matteo Maspero’®, Mark H F Savenije’, Guillaume Landry'~*®, Florian Kamp', forada ptive radiation thera py
Marco Pinto*®, Minglun Li', Katia Parodi’, Claus Belka'* and Cornelis A T van den Berg®

Xiao Liang @, Liyuan Chen"*®, Dan Nguyen'®, Zhiguo Zhou', Xuejun Gu'®, Ming Yang' ®, Jing Wang'
and Steve Jiang'

Maastro

Inter-fraction deformable image registration using unsupervised

deep learning for CBCT-guided abdominal radiotherapy

Huigiao Xie', Yang Lei, Yabo Fu"*, Tonghe Wang'~, Justin Roper', Jeffrey D Bradley', Pretesh Patel',

TianLiu"” and Xiaofeng Yang'~

A single neural network for cone-beam computed tomography-based
radiotherapy of head-and-neck, lung and breast cancer

Matteo Maspero®>*, Antonetta C. Houweling®, Mark H.F. Savenije*®, Tristan C.F. van Heijst?,
Joost J.C. Verhoeff®, Alexis N.T.J. Kotte®, Cornelis A.T. van den Berg®"

Transformer CycleGAN with uncertainty estimation for CBCT based
synthetic CT in adaptive radiotherapy

Branimir Rusanov">*" @, Ghulam Mubashar Hassan', Mark Reynolds', Mahsheed Sabet ">,
Pejman Rowshanfarzad"’ @, Nicholas Bucknell’, Suki Gill*, Joshua Dass” and Martin Ebert">""*
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ART - Prediction of changes

CTV and PG ROls
CBCT images

e

Predict changes so patients can be
monitored more closely

Feature extraction & ML models
* To predict volume changes

DL models

* To predict geometric or dosimetric changes
based on full images
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Deep learning driven predictive treatment planning for adaptive m)
radiotherapy of lung cancer e

Pengpeng Zhang **

Donghoon Lee?, Yu-chi Hu?, Licheng Kuo?, Sadegh Alam?, Ellen Yorke?, Anyi Li?, Andreas Rimner”,

Prediction of inter-fractional radiotherapy dose plans with domain
translation in spatiotemporal embeddings

Andrei Svecic?, David Roberge®, Samuel Kadoury®©*

Early Prediction of Planning Adaptation Requirement
Indication Due to Volumetric Alterations in Head and Neck
Cancer Radiotherapy: A Machine Learning Approach

Vasiliki Iliadou *(, Toannis Kakkos (), Pantelis Karaiskos *, Vassilis Kouloulias *, Kalliopi Platoni *{,
Anna Zygogianni ° and George K. Matsopoulos !

A prediction model for dosimetric-based lung adaptive
radiotherapy

Chaogiong Ma"2# | Zhen Tian>*# | Ruoxi Wang' | Zhongsu Feng' |
Fan Jiang' | Qiaogiao Hu' | Fang Yang"* | AnhuiShi' | Hao Wu'®

Dynamic stochastic deep learning approaches for predicting
geometric changesin head and neck cancer

Julia M Pakela'* (3, Martha M Matuszak®, Randall K Ten Haken?, Daniel L McShan* and Issam El Naga'~
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Predictive dose accumulation for HN adaptive radiotherapy

Donghoon Lee®, Pengpeng Zhang®, Saad Nadeem @, Sadegh Alam , Jue Jiang, Amanda Caringi,
Natasha Allgood, Michalis Aristophanous, James Mechalakos® and Yu-Chi Hu
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Purposes of Al for treatment verification

e Streamline workflows
* Automated analysis of (measured) data

e Al could mean a considerable leap forward in analyzing the complex multi-dimensional
datasets common in RT treatment verification

* Save time and resources, reduce human error

* Enhance precision and reliability
* Al-based enhancement of imaging and dosimetry
* Improve precision and reliability of data used for treatment verification

* Preemptive verification
* Predictive models anticipate deviations and detect anomalies
* Precautionary adjustments to maintain consistency of treatment delivery

% Maastricht University @ Maastricht UMC+
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Challenges and future research

* Multi-center validation
 Needed to ensure generalizability and robustness
* Not commonly taken into account in studies
* No conclusive results from the multi-center studies that have been performed

* Integration of Al tools in clinical workflows
* Complexities of regulatory approvals and clinical acceptance
* Understanding of and trust in Al decisions is paramount

* Need for XAl methods
e XAl currently usually added as another layer on top of the Al model

% Maastricht University @ Maastricht UMC+
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Take-home messages

* Al has the potential to revolutionize RT treatment verification through improved
efficiency, precision, and safety

 Continued development and integration of Al into RT treatment verification
workflows hold great promise for enhancing RT treatment and thereby patient
outcomes, underscoring the need for ongoing research, collaboration, and
innovation

e Crucial to address the challenges of validation, implementation and explanation to
fully realize the potential of Al for treatment verification in a clinical setting

b‘"ﬂ Maastricht University (!f Maastricht UMC+
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ICCR

Al for treatment verification in photon
external beam radiotherapy

Cecile J.A. Wolfs, Luca Heising, Frank Verhaegen

cecile.wolfs@maastro.nl
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