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Cervical cancer

CERVICAL CANCER
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Cervical Cancer. Carcinoma of Cervix. Malignant neoplasm arising from cells in the cervix uteri.
Image Copyright: Designua / Shutterstock

Carcinoma only in cervix

@ Netherlands Cancer Institute: ~50 patients treated per year “@



Cervical cancer

Standard of care
e 25x 1.8 Gy EBRT + chemo

* 3 x 7 Gy MR-guided adaptive brachytherapy

IMRT + IGRT
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MRI gu:ded adaptlve brachytherapy (IGABT)

- Time-consuming workflow!

Potter et al
ctRO 2018
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Cervix brachytherapy: target volumes

Pre-treatment

Fraction 1

HR-CTV

visible tumor

GTV + microscopic disease
+ cervix

pre-treatment tumor extent
(+ possible margin on the
HR-CTV)
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Cervix brachytherapy: target volumes
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How can we best propagate structures from fraction 1 to fractions 2 and 37
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Data

1. Training set: 203 patients, 2011-2021

-tT2 scans patients 168 41

- clinically used structures images 455 | 120

2. Test set: 29 patients (79 images), February 2022-August 2023
- for all fractions: tT2 scans + clinically used structures

- for fractions 2 and 3: rigidly propagated structures before correction
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Methods

1)
2)
3)
4)

5)

Rigid registration: currently used clinically
Deformable registration

Image-only auto-segmentation: MRI as input to auto-segmentation

Image+prior auto-segmentation: MRI + previous segmentations as input

Patient-specific fine-tuning: image-only model is trained on the previous

fraction images = one model per patient/fraction
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Methods

Performance evaluation
* on the 2nd and 3rd fractions of the 29 patients
e clinical structures as ground truth
* surface Dice (3 mm), mean surface distance, added path length

* Wilcoxon signed-rank test
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Training details

1) Training of the auto-segmentation models on the training set: 3D nnU-Net

2) Patient-specific fine-tuning on the test set
e Continued training the image-only model on fraction N-1, evaluated on fraction N

» Stopped after 5 iterations (empirically observed that results didn’t change much)
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Results

rigid registration
deformable registration
image-only segmentation
image+prior segmentation
patient-specific fine-tuning
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Surface Dice (3 mm)

Results
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rigid registration
deformable registration
image-only segmentation

patient-specific fine-tunin

image+prior segmentation
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Deep learning-based auto-segmentation
outperformed the registration methods
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Results

rigid registration
deformable registration
image-only segmentation
image+prior segmentation
patient-specific fine-tuning

c o o o =
N A o o O
R 4

Surface Dice (3 mm)

o
o

!

¢

!

¢
¢

IR-CTV

HR-CTV

GTV

Deep learning-based auto-segmentation
outperformed the registration methods

Adding patient-specific information
improved upon the image-only model
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Surface Dice (3 mm)

Results
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rigid registration
deformable registration
image-only segmentation
image+prior segmentation
patient-specific fine-tuning
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Deep learning-based auto-segmentation
outperformed the registration methods

Adding patient-specific information
improved upon the image-only model

Patient-specific fine-tuning outperformed
the image + prior model
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Rigid

MSD: 3.3 mm .. g‘ .y
Deformable

_\-\ qMSD 1.5 mm ...'“....
'

@ ( \( Image -only
\ rﬂ MSD: 0.9 mm
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Image+pr|or

clinical IR-CTV
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Current steps

Evaluation of the potential clinical impact of using the image-only and the
patient-specific models

* Automation bias
* Dosimetric impact
* Inter-observer variability

* Time gains

Clinical implementation!

NETHERLANDS ;
CANCER
INSTITUTE



Thank you!

ﬁ r.simoes@nki.nl
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