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AI in RT

§ In the vast majority of applications, the U-net is 
used

§ Trained in a supervised fashion

§ We have labels (for example clinical 
segmentation masks, dose distributions, CT 
scan)

§ In motion tracking applications, we will see 
more heterogeneous models

§ R-CNN, mask R-CNN, faster R-CNN, Retina Net

§ LSTM

§ Often limited labels, cannot train U-net

§ unsupervised training is possible
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Models
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https://arxiv.org/pdf/1505.04597.pdf



Treatment of moving tumors

§ Lung tumors are the 1st cause of cancer 
deaths in men, 2nd in women in Germany 
(Robert Koch Institute)

§ Stereotactic body radiotherapy (SBRT) and 
hypofractionation has brought long term 
control in the range of 80-90%

§ Successful radiation delivery requires 
respiratory motion management strategies

§ Also applies to liver, pancreas and other 
lesions in the abdomen
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Motion management
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Dhont et al. Clin Oncol 2020 

Timmerman et al. JAMA Oncol 2018
Ball et al., Lancet Oncol 2019 



SBRT of moving tumors
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Options at the clinic
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Conventional linac and ITV

§ Typically peripheral stage 1-2 tumors

§ Pros: relatively simple workflow and limited 
treatment times

§ Cons: larger irradiated volume for larger 
motion

MR linac and gating

§ Typically central stage 1-2 tumors

§ Pros: limited irradiation volume

§ Cons: limited throughput, median treatment 
time 50 minutes, limited availability of 
technology (5 in Germany), high investment

8Hz 2D cine-MRI for target tracking

4DCT scan for
ITV determination



Background

Adapted from Keall et al. (2022) ICRU Report 97 7

Image-guided adaptive RT

Timescales

§ Pretreatment

§ Minutes

§ Inter-fractional changes

§ Online adaptive RT

§ During treatment

§ Second(s) or less

§ Intra-fractional changes

§ Real-time adaptive RT
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Motion management

§ Relies on 2D x-ray images, ideally 
stereoscopic

§ Usually requires marker implantation

§ Patient discomfort

§ Risk of infection

§ Risk of marker migration
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X-ray tumor tracking

§ Markerless tracking is challenging

§ Low contrast

§ Shadowing by ribs, mediastinum 
or diaphragm

§ Typically based on template 
matching or correlation to surface

§ For CyberKnife markerless tracking 
66% of selected patient deemed 
eligible
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Baghat et al. Cardiovasc Intervent Radiol 2010 

Fiducial marker implantation apparatus

LMU lung cancer patient during 
CBCT acquisition

Bahig et al. Int J Radiat Oncol Biol Phys 2013 

trackable

not trackable

Bahig et al. Int J Radiat Oncol Biol Phys 2013 



X-ray tracking

§ Stereoscopic x-rays

§ Surface imaging with structured light

§ Thermal camera integrated for improved surface 
definition

§ Submillimeter positioning accuracy

§ Current use for stereotactic brain radiosurgery 
and deep inspiration breath hold for breast 
cancer

§ Application to lung cancer is in development

§ Markerless tumor tracking approach

§ For gated breath hold
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Exactrac Dynamic
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Mendes, …, Landry, Freislederer JACMP 2022

https://www.brainlab.com/radiosurgery-products/lung/

https://www.brainlab.com/radiosurgery-products/exactrac/



Motion management with AI
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Overview

G. Landry | AI for motion management | 09/07/2024

§ AI allows shifting calculation time from online to 
the training phase

§ Models are often very fast 

§ 10 to few 100 ms

§ In RT we often have prior knowledge

§ Diagnostic or RT planning images

§ Allows patient-specific training strategies

§ Challenges

§ Tumors are very heterogeneous

§ Need models which limit false positives

§ Object detection networks are good for this

X-ray tracking studies

MR linac studies

Mylonas et al. J Med Imaging Radiat Oncol 2021 



Some definitions
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Lombardo,…, Landry, …, Placidi Radiother Oncol 2024



Methods for x-ray target localization
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Object detection networks

§ Object detection networks

§ Region and CNN: R-CNN

§ Mask R-CNN

§ Faster R-CNN

§ Retina net is a good example

§ Feature pyramid network

§ Class subnet

§ Box subnet

§ Fast enough

§ Outputs a bounding box and a confidence 
score

§ Can also classify the object
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R-CNN and Retina Net
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class + box subnets

class + box subnets

class + box subnets

class + box subnets

Classification subnet

Box regression subnet

class label + score

box coordinates

Feature Pyramid Network

Coarse feature maps

Pyramid levels

Fully convolutional network layers

Example output

Retina Net

https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms-36d53571365e



Object detection networks
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X-ray tracking: pancreas
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§ Pancreas tumor tracking

§ Uses Faster R-CNN

§ Patient specific training on simulated 
DRRs from planning CT

§ PTV projection is the ground truth

§ Various projection angles

§ Use deformations of planning CT to 
generate multiple training images



Object detection networks

§ Pancreas tumor tracking

§ Uses Faster R-CNN

§ Patient specific training on simulated 
DRRs from planning CT

§ PTV projection is the ground truth

§ Various projection angles

§ Use deformations of planning CT to 
generate multiple training images

§ Potential issue: test images also 
sampled from the same planning CT
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Example results: very good agreement

X-ray tracking: pancreas



Classical machine learning
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X-ray tracking: lung
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Fluoroscopic tracking set up in Chiba, Japan
§ Here classical machine learning was used for 

tracking lung tumors

§ Steroscopic x-ray imaging setup similar to the 
Exactrac

Classical ML: random forest approach to classify 
patches as tumor or non-tumor

Convert patches to features before random forest

Aggregate positions in likelihood map

Good data separation

Training: 4DCT

Testing: real x-ray images

Challenge: manual labelling of ground truth



Classical machine learning

§ Here classical machine learning was used for 
tracking lung tumors

§ Steroscopic x-ray imaging setup similar to the 
Exactrac

§ Classical ML: random forest approach to classify 
patches as tumor or non-tumor

§ Convert patches to features before random forest

§ Aggregate positions in likelihood map

§ Only provides a center position

§ Good data separation

§ Training: 4DCT

§ Testing: real x-ray images

§ Challenge: manual labelling of ground truth

18

X-ray tracking: lung

G. Landry | AI for motion management | 09/07/2024



AI for markerless tumor tracking
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Patient specific approach

G. Landry | AI for motion management | 09/07/2024

§ Two-stage training 

Baseline model

Patient specific 
model 1

Patient specific 
model 2

Patient specific 
model 3

training

training

training

trainingLung Imaging Database Consortium
(LIDC) dataset (~850 lung CTs)

97 lung-cancer patients 
treated in the clinic



Object detection with AI
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Retina U-net
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Extra high-res levels for semantic segmentation
à Another loss for segmentation:
Seg loss = Cross entropy loss + Soft dice loss

class + box subnets

class + box subnets

class + box subnets

class + box subnets

Classification subnet

Box regression subnet

class label + score

box coordinates

Feature Pyramid Network

Coarse feature maps

Pyramid levels

Fully convolutional network layers

class + box subnets

class + box subnets

class + box subnets

class + box subnets

Classification subnet

Box regression subnet

class label + score

box coordinates

Feature Pyramid Network

Coarse feature maps

Semantic segmentation features

Pyramid levels

Fully convolutional network layers

Retina NetRetina UNet
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§ Localization error 2.5mm
§ DSC > 0.8
§ Runtime 70 ms per frame

L. Huang

Validation using 4D labelled CBCT projections

4DCBCT ground truth generation



Methods for MR linac target localization
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MR linac tracking

§ Friedrich et al. (2021) Med Phys

§ U-net auto-segmentation model outperformed B-
spline on under-sampled radial cine MRI

§ Manual labels on 150 frames (2 patients)

§ Patient-specific training strategy on 10 manually 
labeled frames

§ Hunt et al. (2022) IJROBP

§ U-net DIR model outperformed conventional         B-
spline and Demons

§ Cine MRI from vendor (8 Hz)   

§ About 600k frames without labels (21 patients)
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Seminal AI efforts
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MR linac tracking

§ Tranformer-based DIR (Transmorph)

§ About 1.4M unlabeled (219 patients) and 8k 
labeled frames (35 patients)

§ Patient-specific training on 8 labeled frames 
significantly improved performance compared to 
unsupervised and supervised training

§ Transformer DIR model outperformed U-net auto-
segmentation and B-spline DIR
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Transformers
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Lombardo, Velezmoro …, Landry under review

Lombardo, Velezmoro …, Landry oral at ESTRO 2024 

E. Lombardo L. Velezmoro



MR linac tracking

§ Tranformer-based DIR (Transmorph)

§ About 1.4M unlabeled (219 patients) and 8k 
labeled frames (35 patients)

§ Patient-specific training on 8 labeled frames 
significantly improved performance compared to 
unsupervised and supervised training

§ Transformer DIR model outperformed U-net auto-
segmentation and B-spline DIR

§ Disadvantage

§ Patient-specific labelling and training costs 
additional time

§ 3 minutes labelling

§ 4 minutes training
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Transformers
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E. Lombardo L. Velezmoro

• Transfer learning to 1.5 
cine-MRI from Unity MR-
linac

• Collaboration with 
Sichuan Cancer Hospital, 
Chengdu, China

Dr. Y. Wang



MR linac tracking

§ Foundation models may eliminate the need for 
training (baseline or PS)

§ Large transformers from industry leaders

§ Pre-trained on very large databases

§ Segment Anything Model (SAM) and CoTracker
from Meta AI
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Foundation models
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T. Blöcker

https://www.louisbouchard.ai/meta-sam/ https://co-tracker.github.io/

SAM + CoTracker demo



Methods for motion prediction
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Motion tracking

§ Recurrent neural networks (RNNs) are often used for time series

§ A particularly relevant approach are long short term memory networks

§ LSTM

§ Architecture designed to allow learning long-term dependencies in the input data
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Long short term memory networks
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/                                          



LSTM in radiotherapy
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0.35 T MR linac forecasting with LSTM
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2D motion forecasting in cine-MRI E. Lombardo

4Hz cine MRI, latency approx. 250 ms



LSTM in radiotherapy

29

Experimental validation with MLC tracking

E. Lombardo @ 
Australian MR linac

experimental setup 390 ms latency LSTM

Motion trace Offline LSTM Offline+online LSTM Online LR

High complexity 0.65; 0.64 0.58; 0.61 0.78; 0.87

High motion 0.73; 0.79 0.63; 0.64 0.78; 0.88

Mean complexity 0.72; 0.73 0.61; 0.62 0.86; 0.72

Mean motion 0.83; 0.71 0.59; 0.61 0.71; 0.66

RMSE relative to no prediction (lower better)
phantom

Tracking validation with EPID

G. Landry | AI for motion management | 09/07/2024 Lombardo,…, Landry, Keall Med Phys 2023



Motion management and dose

§ AI may bring speed increase for real time dose 
reconstruction

1. Motion tracking

2. 3D+t imaging

3. Dose reconstruction*

4. Dose accumulation
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What we hope to achieve
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Lombardo,…, Landry, …, Placidi Radiother Oncol 2024

*See talk from Fan Xiao, 
Wednesday at 11h00, 
Auditorium Lumière 
“LSTM-based proton 
dose calculation”



Conclusion

§ For target localization on x-rays, object 
detection models have been mostly used
§ Bounding box prediction

§ For MR linac target localization, networks that 
predict deformations or correspondence 
between points have been used

§ In both cases, some prior knowledge is needed

§ Unlike in OAR segmentation, models do not 
segment or find the lesion from scratch

§ Motion prediction is important for latency and 
can be done with long-short-term memory 
networks
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TrackRad2025 Challenge

• Large public 2D-cine MRI dataset
• 5 participating centers (0.35 T and 1.5 T)
• Labelled and unlabelled data
• Expected March 2025!



Save the date!
October 14th 2024

§ One-day event at the beautiful 
St Vinzenz Haus in the Munich 
city center

§ Distinguished international 
speakers
§ Anna Kirby
§ Luca Boldrini
§ Jan Jakob Sonke
§ Lorenzo Placidi
§ Jennifer Dhont
§ Lorenzo Placidi
§ Niklas Wahl
§ Many more!

§ Contact:

§ Guillaume Landry

§ Stefanie Corradini

St Vinzenz Haus

Xchange 2024 website
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