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Preamble

• Focus on dose for external radiotherapy mainly
• Review of standard dose algorithms
• No exam at the end!
• Feel free to interrupt for any question or remark
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Terminology

Fluence: The number of photons of energy E passing through a
unit cross-sectional area is referred to as the fluence Φ
and is typically expressed in units of cm−2.

Φ(E) =
Photons (E)

Area

Fluence rate: The rate at which photons of energy E pass through a
unit area (⊥ to the propagation) per unit time is called
the flux.

Φ̇ (E) =
Photons (E)
Area× Time

Energy fluence: The amount of energy passing through a unit
cross-sectional area is referred to as the energy fluence

Ψ(E) = Φ (E)× E

JM Letang 4
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Interaction components
(Ahnesjö and Aspradakis 1999)

112 Chapter 8: External beam dose calculations

Photon radiant

energy exiting

the target

Interactions, predominantly

in the flattening filter

Contaminant

charged particle

energy

N
on in

te
ra

ct
ed

 p
hoto

ns

Primary

photon

energy

Primary charged particle

kinetic energy

Scatter photon

energy

Scatter charged

particle kinetic

energy
Primary

energy

deposited

Bremsstrahlung and

annihilation photon

energy

Bremsstrahlung and

annihilation charged 

particle kinetic energy

Scatter energy

deposited

Bremsstrahlung

plus annihilation

energy deposited

Bremsstrahlung and

annihilation photon

energy

Bremsstrahlung and

annihilation charged

particle kinetic

energy

Head scatter energy

deposited Scatter energy

deposited

Bremsstrahlung

plus annihilation

energy deposited

Head scatter

photon energy

Head scatter charged

particle kinetic energy

Scatter photon

head scatter

energy

Scatter charged 

particle kinetic

energy

Contaminant

charged

particle energy

deposition

Treatment
head & air

Patient

Primary
dose

Direct beam
phantom scatter dose Head scatter dose

Contaminant
charged
particle dose

Figure 8-1 Interaction components of a clinical photon beam with the patient.
Source: Ahnesjö and Aspradakis 1999.1 Reproduced by permission of IOP Publishing.

coming from the target, or (2) the photons coming from the tar-
get do not interact with a flattening filter (i.e., flattening-filter-
free beam) and the peaked teardrop lobe is used for treatment.

The majority of photons coming from the target interacts
directly with the patient and appears to originate from a point
source of radiation. About 10% of the photons reaching the
patient appear to originate from other locations in the linac
head.19 These photons are primarily created in the flattening
filter and are called head scatter or extra-focal photons. For
flattening-filter-free beams, these photons (and the subsequent
particles) are largely nonexistent and do not need to be modeled
for accurate dose calculation. Another component that needs to
be modeled in dose calculation algorithms is the electron con-
tamination. Electron contamination consists of electrons that
are generated in the linac head from photons interacting with
the high-Z components of the linac head (e.g., ion chamber, jaws,
MLCs, etc.). These are mostly low-energy electrons that deposit
their energy near the surface in the buildup region of the photon
beam depth dose curve and are particularly difficult to model
accurately. Electron contamination can also deposit apprecia-
ble dose in some clinical situations such as into the contralat-
eral breast when a physical wedge is used on the medial tangent
beam.20,21

Photons are known as indirectly ionizing radiation in part
because they do not deposit significant amounts of energy
by themselves. Rather, when the photons do interact with a
medium, they set high-energy electrons into motion that deposit
the majority of energy to the patient from a clinical photon
beam. The electrons depositing dose can also create new pho-
tons (called secondary photons) that travel far distances from
the primary interaction site before interacting with the patient
and generating electrons, which then deposit dose. Each sub-
sequent interaction generates photons and electrons of lower
energy, thus depositing dose closer to the interaction site.

Head scatter also needs to be modeled. The sequence of events
for head-scattered photons is the same as that for primary pho-
tons. The difficulty in modeling head scatter is that these pho-
tons do not simply appear to originate from a point source.
Flattening-filter-free beams generate fewer head-scattered pho-
tons compared to flattened beams. As a result, flattening-filter-
free beams are easier to model than flattened beams.

Electron transport is more difficult to model than photon
transport because electrons in motion are continuously inter-
acting in the material, changing direction, and losing energy. In
contrast, a photon travels in a straight line with constant energy
until it interacts with an orbital electron or nucleus of an atom

JM Letang 5
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Linear attenuation coefficient µ
Beer-Lambert attenuation law

dN = −µ N dl

or µ can be defined as a percentage of interaction per unit length as

µ =
|dN| /N

dl

JM Letang 6
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Photon propagation
Beer-Lambert attenuation law

NDT (E) = N0 (E) exp

(
−
∫

r∈ray
µ (r,E) dr

)

Divergence

Ψ(r ,E) ∝ 1
r 2

A A
Ar

2r

S

3r
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Mean Free-Path (MFP)

Mean Free Path (in cm): average distance x1 to the first interaction

TMFP = ⟨x1⟩ =
∫ ∞

0
µx e−µx dx =

[
−xe−µx

]∞
0 +

∫ ∞

0
e−µx dx = 0+

[
−1
µ

e−µx
]∞

0

MFP

TMFP =
1
µ
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Dose

Dose is the absorbed energy per unit mass:

D =
Eabsorbed

m
expressed in Gy (gray) or J kg−1

.

NB: to boil 1 g of water ⇒ 100 calories ≡ 418 J/g = 418 kGy! (only in MRT)

Dose

D (r,E) = Ψ (r,E)× µen (r,E)/ρ (r)

where µen (r,E) is the linear energy-absorption coefficient at r

⇒ relation with the linear attenuation coefficient µ (E)?

JM Letang 9
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Total energy released per unit mass

Given
• Ψ(r,E) is the total energy fluence,
• µ (r,E) is the percentage of interaction per unit length

Energy transfered to all secondary particles per unit mass is:

TERMA

T (r,E) = Ψ (r,E)× µ (r,E)/ρ (r)

NB:
• TERMA is also the divergence of the energy fluence Ψ(r,E)

• Only a fraction of the incident photon energy is transfered to electrons
⇒ µtr & KERMA

JM Letang 10
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Linear energy-transfer coefficient µtr

µtr (E) =
∑

k∈{RS,CS,PE,PP}

fk (E) µk (E)

where fractions fk (E) can defined by subtracting the radiative 2ary parts:

fRS (E) = 1− 1 = 0

fCS (E) = 1− ⟨Esc⟩/E

fPE (E) = 1− ⟨X ⟩/E

fPP (E) = 1− 2mec2/E

given
• ⟨X ⟩ the average fluorescence energy,
• ⟨Esc⟩ the average scattered energy.

⇒ Kinetic energy released (to electrons) per unit mass

KERMA

K (r,E) = Ψ (r,E)× µtr (r,E)/ρ (r) < T (r,E)

JM Letang 11
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Linear energy-absorption coefficient µen

Electrons may experience radiative losses: Fluorescence & Bremsstrahlung

Linear energy-absorption coefficient µen:

µen (E) = (1− g (E)) µtr (E)

where g is the average fraction of the ki-
netic energy that is subsequently lost in ra-
diative energy-loss processes.

Dose

D (r,E) = Ψ (r,E)× µen (r,E)

ρ (r)
= Φe−(r,E)

Sc (r,E)

ρ (r)
< K (r,E)

where Sc (r,E) is the collisional stopping power

JM Letang 12
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Linear energy-absorption µen vs attenuation µ coefficients
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Energy spectrum (LinAc)
(González et al. 2015)

the case of the 18 MV Mevatron. This fact is confirmed when the
photon primary, ϕ0, and scatter, ϕS, distributions provided by both
fits are compared to the corresponding photon fluences extracted
from the PSFt and PSFff, respectively, obtained in the complete MC
simulation.

The weights w0 of the primary source are very similar for both
Gϕγ and Pϕγ , these last being slightly larger. When the energy in-

creases, the average energy of the secondary particles do also, the
relative importance of the scattered source becomes larger and the
values found for w0 reduce. The values of w0 that we have ob-
tained can be compared to those found in MC studies carried out
for linacs other than those here analyzed. In these works the re-
lative weight between primary and scatter sources was de-
termined from the number of particles coming directly from the
target and scored in a PSF determined at the phantom entrance.
The relative weight determined in this way depends on the field
size, while the w0 obtained in our fitting procedure does not.
Despite this we can mention that Chaney et al. (1994) found for a
6 MV linac Siemens MD2 and a field of 28 cm� 28 cm the value
w0¼0.91 in simulations performed with the code EGS4. Using the
code MCNP, Schach von Wittenau et al. (1999) found for a 6 MV
Varian Clinac 2100C, and a field of 40 cm� 40 cm, the value
w0¼0.93. Finally, Fix et al. (2001) simulated with the code GEANT
a Clinac 2300 C/D operated at 6 MV and with fields sizes ranging
between 3 cm 3 cm× and 40 cm 40 cm× , and quoted values of w0

between 0.80 and 0.90. Despite the differences between the geo-
metries of these linacs and those we have analyzed, these values of
the relative weight of the primary source are similar to those we
have found.

The results of the Gϕγ fits produce primary sources that are

much wider than those found for Pϕγ . The ratios of the FWHM of 0
Gϕ

and 0
Pϕ range between 1.7 and 2.4. On the other hand, the width of

the primary source distributions obtained for the 6 MV config-
urations is larger than those found for the linacs operated at larger

15 MV and 18 MV. This can be ascribed to the fact that the target
Bremsstrahlung production in the forward direction becomes lar-
ger as the energy of the incident electrons increases.

To our knowledge, there is no experimental information con-
cerning the size of the primary source for the linacs here studied.
Jaffray et al. (1993) found FWHM¼1.2–1.4 mm and 0.9–1.6 mm for
a Varian 2100 operated at 6 and 15 MV, respectively. Sham et al.
(2008) determined a range 1.49–1.60 mm for a 6 MV Varian 21EX.
These values are slightly smaller than those we have obtained for
the two configurations of the Clinac 2300 C/D which are 1.8 mm
and 1.6 mm. However, Jaffray et al. (1993) also quoted the range
0.5–0.7 mm for a 6 MV Siemens KD2, much smaller than our result
for the 6 MV KDS, 2.7 mm. Zhu et al. (1995) obtained for the 6 MV
Elekta SL25 and 75-5 linacs a FWHM of 2.0–3.5 mm, in agreement
with the value 2.83 mm we found for the 6 MV Elekta Precise. In
any case, this comparison can be considered only at a qualitative
level because the differences in the specific characteristics of the
targets of the various linacs and model may produce differences as
large as those here discussed.

As seen in Table 3, the sizes of the scatter sources obtained with
the two fitting functions, Gϕγ and Pϕγ , are similar, Sσ being slightly
larger in the last case. For a Varian Clinac 21EX operated at 6 MV,
Sham et al. (2008) obtained a FWHM¼21.0–25.6 mm which is
roughly half of the value we have found for the Clinac 2300C/D.
However, Sharpe et al. (1995) determined experimentally that for
a 6 MV Varian Clinac 2100C the inflection point of the distribution
occurred at 34 mm a value close to the 36 mm we have found in
our calculations.

Finally, we analyzed the differences obtained in the function

hornϕ , given in Eq. (8), when the two fitting functions considered
are used. The results found in both cases are very similar and this
indicates that this function is closely linked to the shape of the
flattening filter of each linac.
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Fig. 3. Energy spectra at the beam axis of the photons emitted from the primary source. Solid points have been obtained from the PSFff of each linac. Dashed and solid curves
are the better fits found for the distributions p0

Y and p0
G, defined in Eqs. (18) and (19), respectively. In the case of the 6 MV Clinac (panel (c)), the results of Schach von

Wittenau et al. (1999) for a Varian Clinac 2100C are shown for comparison (open squares). Uncertainties are given with a coverage factor k¼1.

W. González et al. / Radiation Physics and Chemistry 117 (2015) 140–152146

⇒ mean energy 1-3 MeV
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Stopping power
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CSDA range
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Mass attenuation coefficient µ/ρ (cm2·g−1) of Carbon
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⇒ material scaling only affected by density ratio (not in kV imaging dose)

XCOM https://www.nist.gov/pml/xcom-photon-cross-sections-database

JANIS https://www.oecd-nea.org/janisweb/
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Mass attenuation coefficient µ/ρ (cm2·g−1) of Calcium

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100

M
a
ss

 a
tt

e
n
u
a
ti

o
n
 c

o
e
ffi

ci
e
n
t 

(c
m

2
/g

)

Energy (MeV)

total
PN
RS
CS
PE
PC

⇒ material scaling only affected by density ratio (not in kV imaging dose)
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Mass attenuation coefficient µ/ρ (cm2·g−1) of Tungsten
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⇒ material scaling only affected by density ratio (not in kV imaging dose)

XCOM https://www.nist.gov/pml/xcom-photon-cross-sections-database
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Dose calculation engines
(De Martino et al. 2021)

Appl. Sci. 2021, 11, 6806 2 of 20

2. Dose Calculation Algorithm for Photon Beams

A photon dose calculation algorithm must model the energy deposition pattern
induced by a clinical RT X-ray beam from a radiation source, most commonly from a
linear accelerator (LINAC), in patient tissues, characterized by the electron density derived
from computed tomography (CT) imaging of patients. The accelerator head represents the
radiation source and patient tissues and organs stands for the interaction targets. Photons
interact with matter according to a stochastic process that depends on photon energy
and on the atomic number and density of the medium through which they travel. The
principal types of photon interaction in the megavoltage energy range are the photoelectric
effect, Compton scattering and pair production, which attenuate the beam according to the
Lambert–Beer law [7] with an overall linear attenuation coefficient µ(E) given by the sum
of single-process attenuation coefficients.

Modern dose calculation algorithms (Figure 1)—the so called model-based algorithms,
in contraposition to correction-based algorithms—for photon beams are based on the total
energy released in matter (TERMA) value, which is the total energy per unit of target mass
released at the primary photon interaction point [8].
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The differential TERMA energy distribution TE(r) is related to the energy differential
fluence ψE(r) of the primary photon beam by the following relation:

TE(r) =
µ

ρ
(r, E)ψE(r) (1)

where ρ(r) is the local density, estimated from the CT number value, and µ
ρ (r, E) is the

mass attenuation coefficient at r.
Integrating over the beam spectrum, we obtain the TERMA [8]:

T (r) =
∫

E

µ

ρ
(r, E)ψE(r)dE (2)

The development of model-based convolution methods has significantly

improved the accuracy of dose calculations for such heterogeneous tissues when

compared to correction-based methods [18, 19]. Model-based convolution method

use physical principles, which describe the actual physical transport in the tissue, to

calculate the dose (Fig. 8.1). Monte Carlo-based methods and the grid-based

Boltzmann equation solver (GBBS) method provide more accurate dose distribu-

tions. In this section, we describe the most widely used algorithms for radiation

treatment planning such as the convolution method, convolution/superposition

method, Monte Carlo method, and GBBS method.

8.3.1 Convolution Method

The convolution method was proposed byMackie et al. [20] in 1985. In essence, the

energy fluence distribution is convolved with the scatter-spread kernel to obtain the

dose. One of the commonly used convolution method in commercial treatment

planning systems (TPSs) is pencil beam convolution (PBC) [18]. In the convolution

method, the absolute dose at point r
!� �

is given by:

Dose
kernel

Collided
photon

Collided
electron

Collided
electron

Collided photon
(below a cutoff energy)

Incident
photon

T
E

R
M

A

a b
c

Fig. 8.1 Dose calculation algorithm comparison (a) Convolution/superposition method (b) GBBS
method (c) Monte Carlo method

8 Dose Prescription and Calculation 107

yshiba@med.nagoya-cu.ac.jp

• Early algorithms: Dose measurements in water phantom + corrections
(beam penetration, build-up, ...)

• Model-based (eg CT) techniques:
Convolution, Monte Carlo, Transport Equation
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Point Kernels
(Battista 2019)

Convolution and Superposition Methods � 159

x-ray source

primary x-raysr0

ΨE(r0)

TE(s)

k(E, s, r)

D(r)

Figure 4.1: Schematic for dose spread kernels.

It requires the calculation of the local dose spread kernel for each combination of
source-target locations, r and s, and for each energy bin. This could be done using
the Monte Carlo method, but this would negate any time savings gained by the
convolution-superposition dose calculation algorithm. In the following sections, we
will discuss various approximations to improve the efficiency of superposition dose
calculations.

4.2.2 Polyenergetic Kernels

The integral with the energy spectrum of TERMA in Equation 4.4 can be simplified
if we first define an average polyenergetic kernel by pre-integrating over energy, as
follows:

k̄(s, r) =

´

TE(s)k(E, s, r)dE

T (s)
(4.5)

where T (s) is the overall TERMA from primary photons of all energies

T (s) =

ˆ

TE(s)dE (4.6)

The polyenergetic kernel is thus obtained as a TERMA-weighted sum of mo-
noenergetic kernels. Using the polyenergetic kernel, the 3D superposition integral
(Equation 4.4) then simplifies to

D(r) = [1/ρ(r)]

˚

T (s)ρ(s)k̄(s, r)d3s (4.7)

162 � Introduction to Megavoltage X-Ray Dose Computation Algorithms

Figure 4.3: Convolution dose calculation for a Co-60 beam with field size
30× 30 cm2. The point dose kernel was alculated by the Monte Carlo simulation.
The dose distribution was obtained by the convolution integral of TERMA with the
point dose kernel (Equation 4.11). The calculation was simplified by ignoring the
re-orientation of kernels along beam divergent rays.

ignored in the orientation of dose spread kernels. For divergent beams, the kernels
should be slightly tilted along primary beam rays, especially for large fields or short
source-to-surface-distance (SSD) beam setups (Sharpe and Battista 1993).

To use a convolution-style algorithm for a heterogeneous medium, we need to
find efficient ways to modify the pre-calculated in-water kernels based on densi-
ties of the voxels lying between the primary photon interaction point and the dose
receiving point. This allows the kernel to change its spreading pattern at each in-
teraction point. With a spatially-varying kernel shape, superposition becomes the
more appropriate mathematical description.

4.2.4 Analytical Representations of Kernels

There are some advantages in representing the kernels with analytical expressions.
For example, this facilitates ad-hoc access to kernel data and simplifies kernel modifi-
cation for tissue inhomogeneity. It also provides physical insight into the dependence
of the kernel values on the density distribution in the medium.

The splitting of both the primary photon energy release and kernels into pri-
mary and scattering components results in clear segregation of tasks for enhanced
computational clarity and efficiency. X-ray beam hardening effects and tissue in-
homogeneity effects can be handled more explicitly in this way. For example, the
kernel can be divided into primary and secondary components as follows:

k̄(r) = k̄p(r) + k̄s(r) (4.12)

1. compute the TERMA TE at point s

2. convolve with the kernel to compute dose D at r

JM Letang 22
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Kernel-based method
(convolution/superposition)

Basic ideas:
• Kernels represent the dose deposition of secondary particles stemming

from a point irradiation
• Kernels are not (easily) accessible through measurements
⇒ Monte Carlo calculations.

• Spatial invariance: no edge/border considerations
⇒ Simulations in large water boxes

• Kernels are normalized to 1 and represented with spherical coordinates∫∫∫
∞

hE (r) dV ≜ 1

and usually separated into 2 parts: hE = hprim,E + hscat,E sum of primary
dose (e−) and phantom scatter dose (γ)∫∫∫

∞
hprim,E (r) dV =

µen,E

µE
and

∫∫∫
∞

hscat,E (r) dV =
µE − µen,E

µE

⇒ Kernel model: exponential attenuation and divergence

JM Letang 23
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From Dose to Energy Fluence
Analytical kernels: Homogeneous model

Kernel in water (from Ahnesjö 1989)
= energy released by the 1ary + 2ary photons

h (r , θ) =
Aθe−aθr

r 2 +
Bθe−bθr

r 2

Since the energy deposited per unit volume is the diver-
gence of the vectorial energy fluence

h (r , θ) T (s) ρ (s) dV = −∇ ·Ψ(r , θ)

and
∇ ·Ψ(r , θ) =

1
r 2

∂

∂r
(
r 2Ψ(r , θ)

)
the total energy fluence is

Ψ(r , θ) = T (s) ρ (s) dV
1
r 2

(
Aθ
aθ

e−aθr +
Bθ
bθ

e−bθr
)
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From Energy Fluence to Dose
Analytical kernels: Heterogeneous model

The total energy fluence should be scaled by the relative electron density

Ψ(r , θ) = T (s) ρ (s) dV
1
r 2

(
Aθ
aθ

e−aθL(r ,θ,φ) +
Bθ
bθ

e−bθL(r ,θ,φ)
)

where the rectilinear scaling

L (r , θ, φ) =
∫ r

0
η (t, θ, φ) dt ≈ η (r , θ, φ) r

and the relative (to water) linear attenuation coefficient

η (r , θ, φ) =
ρe− (r , θ, φ)
ρe−,water

≃ µ (r , θ, φ)
µwater

We get the analytical expression of the kernel with inhomogeneities

h (r , θ, φ) = η (r , θ, φ)
Aθe−aθL(r ,θ,φ) + Bθe−bθL(r ,θ,φ)

r 2
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Balance between kernel components
Primary dose (e−) vs phantom scatter dose (γ)

• At low energies (< 1 MeV): the electron range is very much shorter than
the photon mean free path. A considerable portion of the primary photon
energy is also further transported to yield scatter dose.

• At high energies (> 10 MeV) the electron range is of the same order as
the photon mean free path. Only a minor part of the primary photon
energy is transferred to scatter dose.
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Calculation of dose from point kernels
(Ahnesjö and Aspradakis 1999)

Two-step procedure:
1. Ray-tracing primary photon trajectories

(including beam modulators...) in a
Cartesian matrix (cf Siddon 1985)
⇒ Energy released in the patient

2. Dose is calculated by superposition of
appropriately weighted kernels.

Convolution and Superposition Methods � 159

x-ray source

primary x-raysr0

ΨE(r0)

TE(s)

k(E, s, r)

D(r)

Figure 4.1: Schematic for dose spread kernels.

It requires the calculation of the local dose spread kernel for each combination of
source-target locations, r and s, and for each energy bin. This could be done using
the Monte Carlo method, but this would negate any time savings gained by the
convolution-superposition dose calculation algorithm. In the following sections, we
will discuss various approximations to improve the efficiency of superposition dose
calculations.

4.2.2 Polyenergetic Kernels

The integral with the energy spectrum of TERMA in Equation 4.4 can be simplified
if we first define an average polyenergetic kernel by pre-integrating over energy, as
follows:

k̄(s, r) =

´

TE(s)k(E, s, r)dE

T (s)
(4.5)

where T (s) is the overall TERMA from primary photons of all energies

T (s) =

ˆ

TE(s)dE (4.6)

The polyenergetic kernel is thus obtained as a TERMA-weighted sum of mo-
noenergetic kernels. Using the polyenergetic kernel, the 3D superposition integral
(Equation 4.4) then simplifies to

D(r) = [1/ρ(r)]

˚

T (s)ρ(s)k̄(s, r)d3s (4.7)
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Scatter Dose
Complexity

TERMA:

TE (r) = ΨE (r0)
( r0

r

)2
exp

(
−
∫ r

r0

µE (l) dl
)
µE (r)
ρ (r)

Dose:

D (r) =
1
ρ (r)

∫∫∫∫
TE (s) ρ (s) hE (r − s) d3s dE

with kernel hE (r − s) is the fraction of the radiant en-
ergy released by primary photons at s which is imparted
per unit volume at r

Complexity for a cubic volume of side N voxels:
• N3 scattering points s,
• N operations to raytrace between a scattering point and a receiving point
• computing dose D (r) to N3 receiving points r

⇒ N7 number of operations for each energy E !
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Polyenergetic case (1/4)
Brute force

Modification of the beam spectrum
• Hardening of the primary beam

with angular dependency: stronger in the beam axis
• A single (mean) energy does not result in accurate dose values.

Brute-force solution: Simple sum

Dprim (r) =
∑

E

Dprim,E (r)

⇒ Number of of bins: 5? 100? × longer than a single energy
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Polyenergetic case (2/4)
(Ahnesjö 1989)

Weighted average over incident spectrum for each material m:

D (r) =
1
ρ (r)

∫∫∫∫
TE (s) hE (r − s) ρ (s) d3s dE

becomes
D (r) ≈ 1

ρ (r)

∫∫∫
T̄ (s) h̄ (r − s) ρ (s) d3s

with the “effective” TERMA

T̄ (r) = Ψ (r0)
( r0

r

)2
exp

(
−
∫ r

r0

µ̄ (l) dl
)
µ̄ (r)
ρ (r)

the “effective” attenuation coefficient

µ̄ (r) =
∫
ΨE (r0) µE (r) dE∫

ΨE (r0) dE

and the “effective” kernel(s):

h̄ (r) =
∫
ΨE (r0) hE (r) dE∫

ΨE (r0) dE
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Polyenergetic case (3/4)
(Ahnesjö and Aspradakis 1999)

Polyenergetic kernel averaged using TERMA-weighted contributions:

D (r) =
1
ρ (r)

∫∫∫∫
TE (s) hE (r − s) ρ (s) d3s dE

with primary dose (e−) vs scatter dose (γ) kernels

D (r) ≈ 1
ρ (r)

∫∫∫ [
T̄prim (s) h̄prim (r − s) + T̄scat (s) h̄scat (r − s)

]
d3s

• Compute weighted “effective” kernels

h̄prim (r) =
∫
ΨE (r0) hp,E (r)µE (s) dE∫

ΨE (r0)µen,E (s) dE

h̄scat (r) =
∫
ΨE (r0) hp,E (r)µE (s) dE∫

ΨE (r0) (µE (s)− µen,E (s)) dE
• Weighted integration over the spectrum of the primary and scatter

kernels

T̄prim (s) =
∫

TE (s)
µen,E (s)
µE (s)

dE

T̄scat (s) =
∫

TE (s)
µE (s)− µen,E (s)

µE (s)
dE
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Polyenergetic case (4/4)
(Ahnesjö, Veelen, and Tedgren 2017)

For the primary dose computation

K (r) =
∫

ΨE (r0)
( r0

r

)2
exp

(
−
∫ r

r0

µE (l) dl
)
µen,E (r)
ρ (r)

dE

Fit of the energy-dependent term at specific distances ∆r for material m

exp (−µ̄m∆r) µ̄en,m =

∫
ΨE (r0) exp (−µm,E∆r) µen,m,E dE∫

ΨE (r0) dE

to get an expression of the KERMA not energy-dependent

K (r) = Ψ (r0)
( r0

r

)2
exp

(
−
∫ r

r0

µ̄ (l) dl
)
µ̄en (r)
ρ (r)
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Beam divergence
(Ahnesjö and Aspradakis 1999)

• Kernels should ideally be ‘tilted’
• Tilt angle ν is calculated in the dose deposition

point of view to avoid kernel rotation

Dose for external photon beams in radiotherapy R127

Figure 9. Kernels should ideally be ‘tilted’ by an angleν versus the beam axis to align with the
primary photon direction at the interaction site.

that approximation compensates for not aligning kernels to the fan-like geometry of the
beam. Many implementations neglect the effect of kernel tilting and a study on the validity
of parallel kernel approximation was carried out by Sharpe and Battista (1993). They
found that in combinations of extreme cases such as small SSD, large field size and high
energy, errors above 3% are likely to be observed. Locally in penumbras larger errors
are generated as artefacts. Nevertheless, they concluded that using parallel kernels was
an acceptable approximation for most clinical situations. Liuet al (1997c) made detailed
comparisons of different approaches to kernel tilting and pointed out that the computation
of the tilt angleν is most efficiently calculated in the ‘dose deposition point of view’ since
a complete coordinate transform between the kernel system and the beam system can be
avoided.

7.2.1.3. Tissue heterogeneity density scaling and finite patient extent.The transfer of energy
by first scatter photons depends on the constitution of the medium between the primary photon
interaction site and the dose deposition point. The deposition of energy mediated by multiply
scattered particles depends on the medium located elsewhere, but it depends more on the
medium close to the initial direction then on media far off, since the scattering cross sections
are largest in the forward direction. This justifies the common approach of scaling all dose
fractions of a point kernelhρ0, calculated for a homogeneous medium of mass densityρ0, by
the mean electron density between the points of energy release and the pointr of energy
deposition, i.e.

hhet(s, r) = ρ(r)

ρ0
c2hρ0[c(r − s)] (33)

where

c = c(s, r) =
∫ 1

0
ρrel[s− `(s− r)] d` (34)

in which ρrel is the relative number of electrons per volume as compared with the reference
medium. The convolution integral in equation (24) is then replaced by the superposition
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Explicit multiple-scatter dose kernel
Recursive calculations (Ahnesjö, Veelen, and Tedgren 2017)

A specific kernel for multiple-scatter dose from all higher order of scattering
events can be introduced:

D = Dprim + (D1sc+Dmsc)

Recall that the primary dose is defined by the primary collision KERMA

K (r) =
µ̄en (r)
µ̄ (r)

T (r)

From K (r) the first-scatter dose can be computed1

S1sc (r) =
µ̄(r)− µ̄en (r)
µ̄en (r)

µ̄en,1sc (r)
µ̄1sc (r)

K (r)

and from S1sc (r) the residual scatter dose can be computed

Srsc (r) =
µ̄1sc (r)− µ̄en,1sc (r)

µ̄en,1sc (r)
S1st (r)

1S stands for SCERMA (SCattered Energy Released per unit MAss)
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Plan

Dose & Interactions

Convolution based methods
CCC
PBC & AAA

Transport equation based methods
Grid-based Boltzmann Solvers
MC

Beyond physical dose
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Collapsed Cone Convolution
Motivations behind the technique

3D Convolution issues:
• Kernel: singular at the origin, ie h (r , θ, φ) = O

(
1/r 2) when r → 0.

• Complexity: N7 for a grid of N3 voxels

Collapsed-Cone Convolution approximation:

(i) Cone collapsing in a discrete spherical coordinate system (r , θ, φ)
⇒ no more kernel singularity at r = 0

(ii) Set of 1D convolutions via recursive relations along transport lines

(iii) Lattice of transport lines (M over 4π)
⇒ Complexity M N3

First introduced by Ahnesjö 1989, CCC is widely used in TPS such as
Pinnacle (Philips), RayStation (RaySearch Laboratories), Monaco (Elekta
CMS), Oncentra (Nucletron), and Mobius3D (Mobius Medical Systems).
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Collapsed Cone Convolution
Concept (i): Collapsing

Convolution and Superposition Methods � 189

Figure 4.17: General definition of a cone element (bounded by the two shaded sur-
faces) (A), and the corresponding element on the cone axis (B) with infinitesimal
area dA in spherical coordinates. The primary photon is incident from the bottom,
traveling along the positive z-axis. Note that we flipped the usual beam direction
from down to up for consistency with conventional spherical coordinates.

4.3.5.3 Energy Fluence of a Point Source

To calculate dose deposition from a single interaction point source, we consider the
radiant energy released into the cone volume by primary photons interacting at the
origin and its subsequent propagation along the cone in the form of “wavefronts”
(as in Figure 4.16). As introduced in Chapter 2 (Equation 2.17) based on the energy
conservation principle, the energy deposited in a cone voxel per unit volume ∆V
can be calculated as the divergence of the total vectorial energy fluence Ψ incident
at any location (r, θ), as follows:

∆ε(r, θ)

∆V
= −∇ ·Ψ (4.45)

As an approximation, by assuming the vectorial energy fluence is changing along
the radial direction only, the divergence can then be calculated simply as

∇ ·Ψ =
1

r2

∂

∂r
(r2Ψr) (4.46)

Based on the kernel definition given by Equation 4.3 and the analytical approxi-
mation of the kernel given by Equation 4.13, we can see that the energy conservation
Equation 4.45 can be satisfied if the total energy fluence (wavefront) is as follows:

Ψr = ∆ET

(
Aθ
aθ

e−aθr +
Bθ
bθ

e−bθr
)
/r2 (4.47)

(A) Solid angle Ωm subtended by cone element is collapsed to (B)
infinitesimal area dA on the cone axis (from Battista 2019 and Ahnesjö 1989)

198 � Introduction to Megavoltage X-Ray Dose Computation Algorithms

∆Ω

Collapsing introduces
no

approximation

Collapsing introduces
discretization
approximation

⇐ ⇒

Figure 4.20: In the collapsed cone approximation, no approximation is made near
the interaction voxel where kernel contribution is high and condensed, and cone
elements are smaller than dose elements (voxels). The geometric approximation is
getting worse further away but the kernel contribution is getting much smaller.
Adapted from reference (Carlsson and Ahnesjö 2000).

more accurately in a heterogeneous medium. Note that we introduced the CCC al-
gorithm using the analytical kernels from the original publication (Ahnesjö 1989).
The estimate of the CCC calculation speed is based on this formulation. This es-
timate may not apply to some other implementations such as those used in helical
tomotherapy (Lu et al. 2005; Chen et al. 2011).

The major approximations of the CCC are i) collapsed cone approximation and
ii) rectilinear relative electron density scaling for inhomogeneity in the medium.
The collapsed cone approximation may cause some inaccuracy near interfaces of
inhomogeneities, since the energy equilibrium between adjacent cones, shown in
Figure 4.21, will potentially be disrupted. The density scaling approximation may
also cause inaccurate dose calculations near the interface of inhomogeneities, since
the approximation is less tenable for non-slab geometries between the interaction-
source voxel and dose-receiving voxel, or in tissues with very different effective
atomic numbers.

4.4 COMMISSIONING REQUIREMENTS

As we can see from the general convolution-superposition formula given by Equation
4.7, in order to calculate the dose distribution in a patient, we need to know the mass
density distribution, TERMA, and polyenergetic kernels. To calculate TERMA, we
need to calculate mass attenuation coefficients and primary energy fluence. All of
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Collapsed Cone Convolution
Concept (ii): Recursivity

From the expression of the total energy fluence, the primary energy released
in solid angle Ωm

Rm (r) = T (s) ρ (s) dV
∫∫

Ωm

1
r 2

(
Aθ
aθ

e−aθL(r ,θ,φ) +
Bθ
bθ

e−bθL(r ,θ,φ)
)

dΩ

If we integrate over the solid angle Ωm along direction m ∈ M

Rm (r) = T (s) ρ (s) dV Ωm

(
Am

am
e−amL(r ,θ,φ) +

Bm

bm
e−bmL(r ,θ,φ)

)
with

L (ri , θ, φ) =
ri∑
0

ηi∆ri

and the incremental (primary) radiant energy integrated from ri−1 to ri

∆Rm,prim (ri) = Ti ρi dA Ωm
Am

ηia2
m

(
1− e−amηi∆ri

)
and idem for the scatter radiant energy ∆Rm,scat (ri)
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Collapsed Cone Convolution
Concept (iii): Transport lines

Convolution and Superposition Methods � 193

(A)

Primary Beam

Energy transport lines

(B)

Figure 4.18: (A) Illustration of 2D dose matrix with 10 cone axes (black arrowed
lines) and point dose kernels (aligned with the primary beam axis) at interaction
points along one of the cone axes. Fresh TERMA is released at the intersection
point of the cone axes. (B) Point dose kernels are collapsed onto cone axes. The
radiant energy is released, transported, and attenuated along the transport lines
shown in red. For clarity, energy release and propagation are shown only along one
energy transport line direction. In practice, multiple transport lines will be crossing
each dose voxel from different cone-axis directions. Inhomogeneities are accounted
for in the calculations of TERMA and kernels by using radiological path lengths.

(A) Point kernels sampled with 10 cones ⇒ (B) radiant energy is released,
transported, and attenuated along the transport lines.

(from Battista 2019 and Ahnesjö 1989)

⇒ for a given direction m, the radiant energy at a given voxel only depends
on the upstream cones
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Collapsed-Cone Convolution
Concept (iii): Transport lines

surface into discrete elements. Figure 2 shows a sample of
the tessellations for various resolutions used in this work.

The main calculation time of the brachy-algorithm is
spent in the CC steps �II and III in Fig. 1�. The number of
calculation operations, and hence the calculation time on se-
quential hardware, tCPU, is proportional to the number of
transport directions and the number of voxels,

tCPU � M · N3 = �M1sc + Mrsc� · N3, �1�

where M is the total number of transport directions, M1sc is
the number used for first-scatter dose calculation, Mrsc is that
for residual scatter, and N3 is the number of voxels in the
three-dimensional calculation grid. It has previously been
shown that calculations using the two steps of successive
scattering can use a smaller number of total directions for
similar levels of kernel discretization artifacts in the end re-
sult than what is achievable through calculation of the total
scatter dose in a single step.12 Optimizing computational ef-
ficiency, hence, translates into searching the minimum num-
ber of total transport directions that result in acceptable ap-
proximations in dose from discretization artifacts, and how
these directions are best split between the steps for first and
residual scatter. In the current work, the calculations are done
in homogeneous phantoms but the algorithm considers het-
erogeneities and finite patient dimensions both in deriving
the primary dose, the distribution of released scatter energy,
and through kernel-scaling corrections.12,13 The calculation
time scaling in Eq. �1� is therefore valid for both homoge-
neous and heterogeneous geometries.

Point kernels are more isotropic at low than at high ener-
gies due to the underlying cross sections for photon scatter-
ing. This can be used to gain speed, since if the kernels can
be approximated as isotropic it eliminates the need for align-
ment of kernel directions versus the rays from the primary
source, allowing the two CC steps to be merged and ex-
ecuted in common for all the sources of an implant. An ear-
lier work16 has shown that it is not appropriate to approxi-
mate 350 keV point kernels as isotropic and this is therefore
not investigated in this work. Use of isotropic kernels has

earlier been found appropriate at and below 100 keV for
direct, total-scatter dose calculations with a straightforward
�i.e., not collapsed cone� superposition algorithm.16

Residual-scatter kernels at these energies have already in
previous work been approximated as isotropic.12,13 In this
work the possibility of also approximating the first-scatter
point kernels as isotropic will be investigated. Problems with
the isotropic assumption might arise for kernels in high
atomic number materials which show a pronounced forward
directed peak stemming from elastically scattered photons. A
way around this is to neglect the mainly small angular de-
flections of Rayleigh scattering and instead consider these
photons as primaries and adjusting the attenuation coeffi-
cients accordingly �see Ref. 13�.

It should be noted that the discussion above concerns the
possibility of approximating point kernels as being isotropic
and is not related to assuming that the brachytherapy sources
emit photons isotropically. The anisotropy of clinical sources
is accounted for through the primary dose obtained while
characterizing sources prior to patient calculations with de-
tailed, primary-and-scatter separated Monte Carlo
simulations.14

III. METHODS

III.A. Point kernels and transport lattices

For this work we designed 15 different kernel-
tessellations and their corresponding transport lattices, thus
enabling 225 combinations of the transport directions M1sc

and Mrsc �see Table I�. Point kernel data were generated with
an extended version of EGS4 and has been described in an
earlier work.16

III.B. Generation of test cases

Dose distributions for a point source located at the center
of a cubic water phantom with outer dimensions 18.2 cm
�18.2 cm�18.2 cm were generated for the photon source
energies 28, 60, and 350 keV.

Calculations with the brachy-version of the CC algorithm
were performed for the 225 available ways of combining
M1sc+Mrsc using a voxel size of 0.2 cm�0.2 cm�0.2 cm.
Isotropic kernels for residual scatter were used in the second
CC step for the 28 and 60 keV sources. Calculations were
also performed using isotropic point kernels in both steps for
a selected number of M1sc+Mrsc combinations at 28 and 60
keV.

Reference dose distributions to test the different CC cal-
culations were derived using EGS4 Monte Carlo simulations.
The Monte Carlo results were fitted to polynomials as a
function of radial distance from the source. To eliminate the
influence of statistical noise on the results, the polynomials
were then used to derive dose values at the midpoints of the
cubic voxels used in the CC calculation grid. These distribu-
tions will in the following be referred to as “denoised MC.”

Point source dose distributions were superposed to form
the line, area, and volume implants as schematically shown
in Fig. 3. Equal source strength was used for all positions.

FIG. 2. A sample of spherical tessellations and cone axis directions for ker-
nel discretization. The number of directions into which the sphere is tessel-
lated is indicated by M and corresponds to the number of transport direc-
tions used in CC calculations.

1613 Å. Carlsson Tedgren and A. Ahnesjö: Computational efficiency of collapsed cone dose for brachytherapy 1613
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the scattering angle θ given by the angle of the transport
line versus the vector from the source to the location of
step j. The kernel attenuation factor b jθ , should for distant

radiant energy be replaced by the moving average b jθ , to

compensate for kernel tilting effects. The maximum pos-
sible step length through a voxel for the line direction is

Δlmax , while Δlj is the size of the actual step, see Fig. 1. In
Eq. (11) 1 Δl jmax ⋅ ρ can be interpreted as a size scaling of the
dose receiving mass element, χ η1 1sc sc, ,j j as the local media
energy release and absorption ratio, 1 1 1−( ) ⋅ −ε j jR̂ ,sc as the ef-
fective energy fluences absorbed from distant scatter sources,

σ j jl⋅ Δ self-absorption at the site and Δ ˆ
,R j1sc the amount

locally released and transported away.
3. For each voxel, sum up the contributions from all inter-

secting transport lines

D D j m m

m

1 1sc scx( ) = ( )∑ , , (13)

where the notation j j m= ( ) is used to mark that the value
of j for a particular voxel (at location x) will vary for dif-
ferent transport lines m.

The calculation scheme above is for readability expressed
without Rprim in the denominator. In Eqs. (7) through (12) the
scaling-factors η1sc, j and χ1sc, j are used to adapt for the pres-
ence of heterogeneous media as derived in Appendix III. The
first-scatter spectrum used to calculate these data comes from
isotope specific Monte Carlo simulations in a water phantom.
As will be discussed in Section 3.4, calculations for shields can
require spectra derived explicitly for the shielding material. It
should be noted that b jθ , , η1sc, j and χ1sc, j are all linear quan-
tities, not mass quantities.

2.4. Multiple-scatter dose

The energy released into radiation that will be carried
further by second order scattered photons, S2sc , is given
by:

S

R

D

R
2 1 1

1

1sc

prim

sc en sc m

en sc m

sc

prim

x x( )
=

−( )( )
( )

⋅
( )µ µ ρ

µ ρ
,

,

(14)

The S R2sc prim distribution is used in a collapsed cone op-
eration to calculate the multiple-scatter dose D Rmsc prim (i.e.
all scatter generations from order 2 and up) by casting trans-
port rays through the voxel matrix and applying the same type
of algorithm as for first scatter dose with some differences [21].
One difference versus the calculation of D1sc is that the pa-
rameterized multiple-scatter point kernel uses two exponentials
instead of one.The reason is that second scatter builds up third
and fourth scatter and so on, yielding a buildup effect which
is effectively modeled by parameterization of the multiple-
scatter kernel with two exponentials, where one of these
components can be negative,

ɶH r
C F

r

c r f r

, θ θ θ
θ θ

( ) =
⋅ + ⋅− ⋅ − ⋅e e

2 (15)

where Cθ, cθ, Fθ and fθ are parameters used for fitting Monte Carlo
derived kernel data. Summing over the directions m, the kernel
should fulfill the normalization condition
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m
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m

m1 1e norm (16)

for a “full scatter distance” for rnorm (around 60 to 80 cm in
water).

An absorption correction factor analogous to χ1sc is not
implemented since energy balance require all residual energy
to be absorbed for the multiple-scatter dose. This will cause
some multiple scatter dose to be displaced reflecting the ap-
proximations implied by the kernel approach (no detailed
particle tracking through heterogeneous media, phantom size
of scatter generation). Based on the above circumstances two

quantities, R̂ Cmsc and R̂ Fmsc corresponding to each terms of the

kernel, needs to be transported.The algorithm for R̂ Cmsc is given

Fig. 1 – Setup of transport lines (long arrows) through a

voxel grid (squares) for a given direction. Starting from a

seeding plane with one line per voxel evenly interspaced

as indicated by the hatched vertical arrows, all voxels in

the grid will be passed by lines of this direction [23].

However, the passage for one voxel may be made only

once, as shown in the central voxel, or divided upon

several passages as indicated by the dotted lines in the

voxel to the right. For the case of the central voxel Δlj

equals Δlmax, while for the right voxel the total length of

the steps equals Δlmax. This is considered by the step

length weighting inherent in Eqs. (11) and (21). The value of

Δlmax depends on the line direction.

20 c om pu t e r m e thod s and p r og r am s i n b i om ed i c i n e 1 3 9 ( 2 0 1 7 ) 1 7 – 2 9

For each direction (θm, φn), a set of // is cast to cross all voxels.
The passage for one voxel is made only once.

(from Tedgren and Ahnesjö 2008 and Ahnesjö, Veelen, and Tedgren 2017)
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Collapsed-Cone Convolution
Concept (iii): Transport lines

Algorithm:
• Select a direction m
⇒ set of // lines across the volume

• For each line of the direction m: raytracing (Siddon 1985)
1. start outside the irradiation field
2. initialize the radiant energy to 0
3. attenuate the radiant energy coming from the upstream cones
4. add the radiant energy from the local cone

Rm,prim (ri ) = Rm,prim (ri−1) e−amηi∆ri + ∆Rm,prim (ri )

Rm,scat (ri ) = Rm,prim (ri−1) e−bmηi∆ri + ∆Rm,scat (ri )

5. go to step 3 for the next pixel along the line
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Collapsed-Cone Convolution
Summary

Pre-processing:
• Beamline modeling for Monte Carlo simulations and precalculate kernels
• Analytical fitting of dose kernel parameters
• Dose measurements for calibration

Dose calculations:

tion of the discrete ordinates method to solve the transport
equation analytically,10 and the collapsed cone kernel super-
position algorithm adopted for brachytherapy �CC�.11,12 The
CC approach has been used to model the effects of finite
phantom dimensions,12 heterogeneities including those of
high Z materials,13 and source data connectivity to dose dis-
tributions around clinical sources.14 The CC algorithm has
recently been demonstrated to run very efficiently on main-
frame parallel hardware like multicore processors and
graphical processor units.15

The calculation time for CC algorithms on sequential
hardware is directly proportional to the number of transport
directions chosen for discretizing the scattering kernels. The
total number of required transport directions �and, hence, the
calculation time� is reduced in brachytherapy applications by
the use of a successive-scattering approach16 that applies a
two-step modeling: explicitly considering the first generation
of scattered photons using a first-scatter kernel and then ap-
proximating all subsequent scatter generations by a residual
scatter kernel. The aim of this article is to investigate the
dependence of the resulting accuracy as a function of the
number of directions used in each step. We also investigate if
the reduced dose gradients encountered for multiple-source
implants can allow a reduction of the number of transport
directions required to achieve a certain accuracy. Further-
more, at low and intermediate source energies we investigate
if the close-to isotropic properties of photon scattering en-
able the corresponding point spread kernels to be approxi-
mated as isotropic. Such an approximation could yield a sig-
nificant speed improvement for low and intermediate energy
multiple-source implants since only the primary dose calcu-
lation would need to be executed per source, while the
scatter-dose calculation could be executed in a single step
common to all sources.

II. THEORY

II.A. Collapsed cone superposition for brachytherapy

In superposition/convolution algorithms, the dose is cal-
culated through an initial source ray trace to obtain the en-
ergy released by the primary photons, followed by a super-
position of precalculated �usually by Monte Carlo
simulations� point spread kernels.17–19 The initial ray tracing
also yields the primary dose distribution directly as the col-
lision kerma from primary photons, since photon energies
are low enough to assume charged particle equilibrium
�CPE�. �The primary dose is the absorbed dose mediated by
primary photons whereas the scatter dose is the absorbed
dose mediated by subsequent generations of photons. The
scatter-dose can be further divided into the first- and the
residual-scatter doses, then representing the absorbed doses
mediated by once and higher orders of scattered photons,
respectively.� This also provides an efficient method for
clinical source characterization.14 The CC approach is a ker-
nel superposition method which has been optimized for
speed through discretizing the angular part of the point ker-
nel by collapsing the angular cone binning onto a suitably
designed lattice of transport lines.11,20,21 By use of a
successive-scattering approach,12,16 the transport is divided
into separate steps for first and residual scatter, respectively,
as illustrated in Fig. 1.

II.B. Optimizing the computational efficiency

The lattice of transport lines to cover the calculation vol-
ume is defined by the directions used for point kernel dis-
cretization. The base for this discretization is the set of coni-
cal segments obtained from tessellation of the spherical

FIG. 1. Summary of the brachytherapy dose calculation algorithm: Primary dose, Dprim, is derived using analytical one-dimensional ray tracing �I�. Due to
CPE, the distribution of scatter energy released by primary photons �carried by once scattered photons�, S1sc, is proportional to Dprim. S1sc is used together with
the point kernel for first scatter and an appropriate transport lattice for collapsed cone derivation of the first-scatter dose, D1sc �II�. Similarly, the distribution
of scatter energy released by once-scattered photons �carried by twice-scattered photons�, S2sc, is proportional to the first-scatter dose D1sc. S2sc is used with
a point kernel for residual scatter and a lattice of transport lines to derive the residual-scatter dose, Drsc �III�. The total dose, Dtot, is obtained by summation
�IV�.

1612 Å. Carlsson Tedgren and A. Ahnesjö: Computational efficiency of collapsed cone dose for brachytherapy 1612

Medical Physics, Vol. 35, No. 4, April 2008

(from Tedgren and Ahnesjö 2008)
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Pencil Beam Convolution

172 � Introduction to Megavoltage X-Ray Dose Computation Algorithms

Figure 4.8: Illustration of 2D pencil beam convolution. The primary energy fluence
on the surface is convolved with pre-calculated pencil-beam kernel to calculate the
total dose. Adapted from reference (McDermott 2016).

Pre-calculated finite-size pencil-beam dose kernels (also called beamlet dose
distributions) are often used to optimize IMRT beam intensity pattern quickly.
The beamlet dose distributions can be pre-calculated based on the actual patient
anatomy using any one of the dose calculation algorithms described in this book. For
example, in helical tomotherapy, these beamlet dose distributions are pre-calculated
with the 3D superposition method using a graphical processing unit (GPU). The
final dose distribution is the superposition of these beamlet dose distributions with
optimized incident fluence, which determines the leaf opening times. In this way,
the inhomogeneity is accounted for relatively accurately using the 2D superposition
method because each finite-size pencil beam individually accounts for tissue inho-
mogeneities all along its path using 3D point kernels. However, the computation of
patient-specific finite-size pencil beam dose kernels is time-consuming, depending
on computational power of the treatment planning system (e.g. GPU acceleration).

The pencil-beam convolution algorithm introduced in Chapter 3 was reformu-
lated intuitively as follows. For simplicity, let’s consider a parallel beam incident
on a water medium with a flat surface at zs as shown in Figure 4.9. The polyener-
getic pencil-beam kernel kz(x − x′, y − y′) is conventionally defined as the fraction
of the incident energy at the surface location (x′, y′, zs) from a pencil beam, which
is absorbed per unit mass at a location (x, y, z). Based on this definition, the total
dose distribution is simply the summation of the dose contributions from all pencil
beams. If we assume that the pencil-beam kernel is the same everywhere, i.e., it is
spatially invariant, the total dose is the 2D convolution of the pencil-beam kernel
with the energy fluence given by

D(x, y, z) =

¨

Ψ(x′, y′, zs)kz(x− x′, y − y′)dx′dy′ (4.24)

where Ψ(x′, y′, zs) is the primary photon energy fluence at the surface that is closely
related to the surface TERMA as described in Chapter 3. The pencil-beam kernel is

Conceptual Overview of Algorithms � 123

(A)

P

Broad Beam
Kernel

(B)

P

Slab Beam
Kernel

(C)

P

Pencil Beam
Kernel

(D)

P

Point Spread
Kernel

Figure 3.13: Scatter dose contribution to point P originating from: (A) irradiated
volume. (B) slabs. (C) pencil beams. (D) voxels. Graphics design adapted from
(Sharpe 1997).

(from Battista 2019)

Motivation: Complexity N5 when 3D convolution is N7

Anisotropic Analytical Algorithm (AAA) introduced by Sievinen, Ulmer, and
Kaissl 2005 and refined by Tillikainen et al. 2008, and implemented in the
Eclipse TPS (Varian Medical Systems).
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Analytical Anisotropic Algorithm
Dose spread kernel

Convolution and Superposition Methods � 181

xp

zp

Φβ ∆A

∆V

∆Eβ(xp, yp, zp)

Figure 4.13: Dose spread kernel of a pencil beam.

where Kzp(xp, yp) is known as the lateral scattering kernel. The energy deposition
function is calculated by integrating the pencil-beam kernel over the lateral curved
surface (as shown in Figure 4.12) at depth zp along the pencil-beam axis, as follows:

Iβ(zp) =

‹

curved surface at zp

kzp(xp, yp) dA (4.34)

The surface integration is equivalent to collapsing the lateral energy distribution
onto the beam axis as illustrated in Figure 4.15B. The energy-deposition function
represents the total energy deposited in the spherical shell (per unit thickness) at
depth zp by a single photon of the pencil beam, and has units of J/cm. As discussed
in the previous section, to account for beam divergence, the lateral surface with fixed
zp of a pencil beam is spherical in shape. In a divergent patient coordinate system,
all the pencil beams become co-aligned with beam’s central axis and the same
pencil-beam kernel can be used for all pencil beams in a uniform water medium.
The lateral-scattering kernel Kzp(xp, yp) is the pencil-beam kernel normalized by
the energy-deposition function value at each depth as shown in Figure 4.15C. It
represents the fractional energy deposited per unit area at (xp, yp) on the curved
surface at zp with units of 1/cm2. In a uniform water medium, the lateral scattering
kernel is normalized to unity when integrated over the whole curved surface at any
depth zp:

‹

curved surface at zp

Kzp(xp, yp) dA = 1 (4.35)

The dose (deposited energy per unit volume)

∆Eβ (xp, yp, zp)

∆V
= Φβ ∆A kzp (xp, yp)

where
• Φβ s the fluence of the pencil beam with

the area ∆A on the surface of the
medium.

• kzp (xp, yp) is the pencil-beam kernel
(computed by MC simulations)
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Analytical Anisotropic Algorithm
AAA

 
 

Figure 5:  Coordinates in patient coordinate system and 
beamlet coordinate system on X–Z plane. 

 

The broad clinical beam is divided into finite-size beamlets β. The cross-sectional area of a 

beamlet corresponds to the resolution of the calculation voxel. 

The dose calculation is based on the convolutions over the beamlet cross-sections separately for 

the primary photons, extra-focal photons (second source), and for electrons contaminating the 

primary beam. The dose is convolved by using the basic physical parameters defined for every 

beamlet β. 

 
 
 

 AAA Photon Dose Calculation Model in Eclipse™ 
Page 9 of 23 

                              Janne Sievinen   
                               RAD #7170A  

 
 

 

Two coordinate systems are used in the AAA
algorithm:
• a non-Cartesian beamlet coordinate

system (xp, yp, zp) attached to each pencil
beam

• a Cartesian coordinate system (x , y , z)
associated with the patient
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Analytical Anisotropic Algorithm
Pencil Beam kernel

The Monte-Carlo calculated pencil-beam kernel
is factored into a product of a depth-dependent
energy deposition function and a lateral scat-
tering kernel.

kzp (xp, yp) = Iβ (zp) Kzp (xp, yp)

with the depth-dependent function

Iβ (zp) =

∫∫
curved surface at zp

kzp (xp, yp) dA

and the lateral scaling kernel∫∫
curved surface at zp

Kzp (xp, yp) dA ≜ 1

178 � Introduction to Megavoltage X-Ray Dose Computation Algorithms

target

primary collimator

flattening filter

ion chamber

Y jaws

X jaws

MLC

patient

beamlet (β)

“curved”
voxel grid

Figure 4.11: Major components of a treatment unit. Three sources are modeled
in the AAA algorithm for primary photons, scattered extra-focal photons (mainly
from flattening filter), and contaminant electrons. A clinical beam is divided into
finite-size pencil beams with edges aligned with the dose calculation grid. Adapted
from reference (Varian 2016).
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Analytical Anisotropic Algorithm
(Tillikainen et al. 2008)

The lateral scattering is modeled by an anisotropic analytical kernel (hence
the algorithm name) with six exponential functions (originally 4 Gaussian),

Kzp (xp, yp) =
1
rp

6∑
i=1

ck (zp) e−µk rp

where µk are effective attenuation coefficients that are chosen by varying
effective ranges 1/µk from 1 to 200 mm with equal logarithmic intervals.

The approximation comes from the assumption that the density scaling can
be performed along the depth and lateral directions independently.
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Analytical Anisotropic Algorithm
Tissue Inhomogeneities

The depth-dependent function becomes (η (xp, yp, zp) is the 3D volume of
relative electron density)

Iβ (zp;η) = η (0, 0, zp) Iβ (zeff)

with the effective depth

zeff =

∫ zp

z ′p=0
η
(
0, 0, z ′p

)
dz ′p

and the lateral scaling kernel

Kzp (xp, yp;η) = η (xp, yp, zp)
1
rp

6∑
i=1

ck (zeff) e−µk reff

with the effective radius (SSD source-to-surface distance)

reff =
SSD + zeff

SSD + zp

∫ rp

r ′p=0
η
(
r ′p, zp

)
dr ′p
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Analytical Anisotropic Algorithm
Summary

Convolution and Superposition Methods � 183

Figure 4.15: Illustration of the in-water pencil-beam kernel (A), the energy-
deposition function (B), and the lateral-scattering kernel (C) in the AAA algo-
rithm. The energy-deposition function is obtained by integrating the pencil-beam
kernel laterally or collapsing the lateral energy distribution onto the beam axis. The
lateral-scattering kernel is obtained by normalizing the pencil-beam kernel by the
energy-deposition function value at each depth zp. The energy transport is assumed
to travel along the beam axis first and then spread laterally (D). The inhomogeneity
is accounted for by using radiological depth and radiological cylindrical radius, pro-
ducing the anisotropic kernel shape (E). For simplicity, the projection of the lateral
curved surface was drawn as a straight line.

Total dose from primary photons (su-
perposition of beamlet contributions)

D (x , y , z) =
1

ρ (x , y , z)

∑
β

∆Eβ (x , y , z)
∆V

⇒ + extra-focal photons, electron contamination...
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Boltzmann Transport Equation
Bedford 2019

Balance PDE equation
• for a given volume ∆V ,
• for a given direction Ω,
• for a given particle type: γ, e− or e+.

2

J L Bedford﻿

conditions of energy conservation also apply. The change in fluence in the direction of interest can therefore be 
expressed in terms of the fluence in other directions. This model is then considered for all points of interest in the 
patient volume, a number of directions of interest and a number of ranges of particle energy. The resulting set of 
simultaneous equations is solved to yield the fluence distribution in the patient, and hence the absorbed dose.

For a derivation of the LBTE from first principles, see Boman (2007). Jörres (2015) also carries out a theor
etical treatment of the problem for the more mathematically inclined reader, and the work of Vassiliev (2017) is 
an invaluable resource for those wishing to study the subject in detail. The paper by Hensel et al (2006) contains 
the most intuitive and transparent treatment of the subject in terms of physics and this review initially follows 
their approach. We make the following definitions:

Ωγ	 a unit normal in the direction of interest, subscripted according to radiation type.
r 	 the position of interest.
Eγ 	 the photon energy of interest.
Ee 	 the electron energy of interest.
ρc (r) 	 the density of atomic cores at position r.
ρe (r) 	 the electron density at position r.
Φγ (r,Ωγ , Eγ) 	 The photon fluence at position r, with direction Ωγ and energy Eγ.
Φe (r,Ωe, Ee) 	 The electron fluence at position r, with direction Ωe  and energy Ee.

σ̃C,γ

(
E′
γ , Eγ ,Ω′

γ ·Ωγ

)
 	� The differential Compton scattering cross-section of a photon travelling initially with 

energy E′
γ in direction Ω′

γ and finally with energy Eγ and direction Ωγ.

σ̃C,e

(
E′
γ , Ee,Ω′

γ ·Ωe

)
 	� The differential Compton scattering cross-section of a photon travelling initially with 

energy E′
γ in direction Ω′

γ and giving rise to an electron travelling with energy Ee and 
direction Ωe .

σ̃M

(
E′

e, Ee,Ω′
e ·Ωe

)
 	� The differential Møller scattering cross-section of an electron travelling initially with 

energy E′
e in direction Ω′

e  and finally with energy Ee and direction Ωe .

σMott

(
Ee,Ω′

e ·Ωe

)
 	� The differential Mott scattering cross-section of an electron travelling with energy Ee, 

initially in direction Ω′
e  and finally in direction Ωe .

σtot
M (Ee) 	� The total Møller scattering cross section  for an electron travelling initially with  

energy Ee.
σtot

Mott (Ee) 	� The total Mott scattering cross section for an electron travelling initially with energy 
Ee.

Note that the prime is used to denote initial energy and direction for consistency with other works referred to 
in this review, e.g. Lewis and Miller (1984), Hensel et al (2006) and Vassiliev et al (2010).

Figure 1.  The concept of a small volume of space, entered and exited by various particles in various directions.

Phys. Med. Biol. 64 (2019) 02TR01 (21pp)

[#part OUT] + [#part stopped] = [#part IN] + [#part produced]
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Boltzmann transport equation
Coupled Photon, Electron and Positron FormulationDeterministic Radiation Transport Methods � 327

Rayleigh Scatter
Compton Scatter

Bremsstrahlung

Bremsstrahlung
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Compton Scatter
Pair Production
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Figure 6.9: Interaction matrix used to sort the scattering sources in the coupled
Boltzmann transport equation(s) for photons, electrons, and positrons. For each
given incoming particle, the row indicates which particle interactions can occur,
and the column shows what particles are produced for the given interaction. Note
that no electron interaction produces positrons.

on the functions and variables, as given by

Ω̂γ · ~∇ϕγ(~r, Ω̂γ , Eγ) + Σγ
t (~r,Eγ)ϕγ(~r, Ω̂γ , Eγ)

= sγγ(~r, Ω̂γ , Eγ) + se
−γ(~r, Ω̂γ , Eγ) + se

+γ(~r, Ω̂γ , Eγ) + sγ(~r, Ω̂γ , Eγ)

(6.106)

where sγγ(~r, Ω̂γ , Eγ) is the photon-photon scattering source, and is given by

sγγ(~r, Ω̂γ , Eγ) = ρa,e(~r)

ˆ

dE′γ

ˆ

dΩ′γ σ
γγ
s (Ω̂′γ , Ω̂γ , E

′
γ , Eγ)

× ϕγ(~r, Ω̂γ , Eγ) (6.107)

where σγγs (Ω̂′γ , Ω̂γ , E
′
γ , Eγ) is the doubly differential cross section for photon inter-

actions that create secondary photons, and se
−γ(~r, Ω̂γ , Eγ) is the electron-photon

scattering source, and is given by

se
−γ(~r, Ω̂γ , Eγ) = ρa,e(~r)

ˆ

dE′e

ˆ

dΩ′e σ
e−γ
s (Ω̂′e, Ω̂γ , E

′
e, Eγ)

× ϕe
−

(~r, Ω̂′e, E
′
e) (6.108)

where σe
−γ
s (Ω̂′e, Ω̂γ , E

′
e, Eγ) is the doubly differential cross section for electron inter-

actions that create secondary photons, and se
+γ(~r, Ω̂γ , Eγ) is the positron-photon

3.2 Introduction to the Boltzmann Equation 59

The derivative in the left-hand side of the equation is a one-dimensional form of the
streaming operator. It accounts for particles entering and leaving the volume through
its surface.

Balance Equation in Three Dimensions

This equation is very similar to the continuity equation in fluid mechanics. The
difference is that the continuity equation expresses mass conservation and is written
in terms of the fluid velocity and mass density. Here, however, we are concerned
with conservation of the number of particles and write the balance equation in terms
of fluence. We can start with exactly the same equation as in the one-dimensional
case:

{number of particles entering �V} C {particles produced by a source within �V}

D {number of particles leaving �V}:

This time, however, to account for particles entering and leaving the volume,
we need to integrate over its surface, �.�V/. If En is an outward-pointing unit
vector normal to the surface � , then to find the number of particles entering the
volume we will integrate over the surface � only where . E� � En/ < 0, Fig. 3.6.
Conversely, for particles leaving the volume we will integrate only where . E��En/ > 0.
Furthermore, now particles can in principle travel in any direction. We account for
this by including the directional dependence of fluence. Again using definition 1 of
fluence, we then arrive at an integral form of the balance equation:

�
I
�W
� E��En



<0

ˆ
�
Er; E�;E


 � E� � En



dA C
Z
�V

S
�
Er; E�;E



dV

D
I
�W
� E��En



>0

ˆ
�
Er; E�;E


 � E� � En



dA:

(3.37)

Fig. 3.6 Balance equation in
three dimensions

dA

Ω

n

Ω
→

n

ΔV

(from Battista 2019 and Vassiliev 2016)
Time independent set of equations:

Ω · ∇Φγ + µγt Φ
γ = qγγ + qe−γ + qe+γ + qγ

Ω · ∇Φe− + µe−
t Φe− = qe−e− + qe+e− + qγe

−
+ qe−

Ω · ∇Φe+ + µe+
t Φe+ = qe+e+ + qγe

+

+ qe+
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Boltzmann transport equation
Lewis 1984 & Vassiliev et al. 2010

Two classes of computational methods to solve the Boltzmann transport
equation:
• deterministic with grid-based Boltzmann solvers (GBBS)
⇒ discretization of the phase space

• stochastic numerical techniques with Monte Carlo (MC)
⇒ random sampling of particles and processes

Both methods:
• achieve the same level of accuracy.
• are prone to errors:

Error type GBBS MC

stochastic finite nr of particles
systematic discretization condensed history

approximations VRT
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Linear Boltzmann Transport Equation
Dose calculation

Historically, deterministic algorithms were developed primarily for solving
problems of neutron transport (Lewis 1984)

Vassiliev et al. 2010 developed an implementation of the dose calculation in
radiotherapy with photon beams:
• Explicit solution of the coupled 3D and time independent LBTE
• Discretization in space, angle and energy
• Iteratively solve the radiation transport

⇒ Acuros XB (AXB) algorithm implemented in the Eclipse TPS (Varian
Medical Systems)
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Grid-based Boltzmann Solvers
Standard approximations (Vassiliev et al. 2010)

The LTBE is difficult to solve in practice. Eg for photon transport:

Ω · ∇Φγ + µγt Φ
γ = qγγ + qe−γ + qe+γ + qγ

and for the Compton contribution in the γ equation

qγγ (r,Ω,E) =

∫
E

∫
4π
σCompton

(
E ′ → E ,Ω · Ω′

)
Φγ

(
r,Ω′,E ′

)
dΩ′ dE ′

Additional basic assumptions can be made:
• qe−γ = qe+γ = 0, no radiative emission (local energy deposit)
• qγγ events: Compton (and Rayleigh) scattering

Restriction of photon fluences to just 2 components:
▶ unscattered
▶ first scattered
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Grid-based Boltzmann Solvers
Standard approximations (Bedford 2019)

For electron transport

Ω · ∇Φe− + µe−
t Φe− = qe−e− + qγe

−
+ qe+e− + qe−

Several approximations have been proposed:
• No e+, Pair Production
⇒ two electrons instead of one electron and one positron

• qe−e− events: Møller scattering (inelastic) + Mott scattering (elastic)
▶ Fokker–Planck approximation for highly peaked scattering
▶ Continuous slowing down approximation (CSDA) for larger scattering
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Grid-based Boltzmann Solvers
Phase space discretization (Lewis 1984)

To treat the spatial variable,
• Grid: Cartesian (voxelated model), tetrahedral, or triangulated mesh

(see Reed and Hill 1973, Wareing et al. 2001)

The hexahedral mesh contains 2016 elements and is
shown in Fig. 5. The problem was solved withS4 level-
symmetric quadrature with a convergence criterion of
1024.

Tables VIII and IX give the source iteration and DSA
CPU time and number of transport iterations for the tet-

rahedral and hexahedral meshes, respectively. The ab-
sorption rate percentage is given to verify that the two
element mesh types are giving the same answer. Here
we see that the DSA method is very effective for this

TABLE IX

Hexahedral Mesh CPU Time and Iteration Counts for Test Problem 3

Source Iteration DSA

st,box

CPU Time
~s! Iterations

CPU Time
~s! Iterations

Absorption
Rate
~%!

0.1 1863.8 157 118.1 9 1.277
1.0 1822.5 153 105.0 8 11.79

10.0 1619.3 137 79.7 6 62.17

Fig. 6. Tetrahedral mesh for test problem 4. Fig. 7. Hexahedral mesh for test problem 4.

266 WAREING et al.

NUCLEAR SCIENCE AND ENGINEERING VOL. 138 JULY 2001• Automatic built-in adaptation that increases element refinement near
sharp beam gradients and heterogeneities.

• Model of fluence within each cell: constant, linear, with discontinuities at
the boundaries.
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Grid-based Boltzmann Solvers
Phase space discretization (Lewis 1984)

To treat energy variable,
• Multigroup method: cross-sections become piecewise constant
⇒ integrals become sums.

• Generation of the appropriate group constants is not easy

To treat the angular variable,
• Moment expansions: Legendre polynomials or spherical harmonics
• Discrete ordinates method: solve the equations for discrete angles
• Hierarchical partition over 4π: adapt to the DCS

(see Kópházi and Lathouwers 2015)
640 J. Kópházi, D. Lathouwers / Journal of Computational Physics 297 (2015) 637–668

Fig. 2. The hierarchical sectioning of the angular sphere into patches.

removal operator by visiting the phase-space elements in some pre-determined order. Section 5 demonstrated the method 
by applying it to various examples. Finally conclusions are provided in Section 6.

2. Space–angle DGFEM discretization

2.1. Elements in phase space

The phase space of the particle transport is constructed as a product of the spatial domain V and the sphere of directions 
D , i.e. the angular domain. The spatial domain V is split into elements Vk , where k is the spatial element index and we 
assume that every element face (or edge in 2 dimensions) is flat. Structured or unstructured spatial meshes of first or 
second order consisting of triangular, quadrilateral hexahedral, and tetrahedral isoparametric elements can be employed. 
This choice is not essential for the developments in this paper; other finite element spaces may be used as well.

The definition of the angular elements is based on a hierarchical sectioning of the sphere into patches, denoted by Dκ , 
where κ is the patch index. The procedure is demonstrated in Fig. 2. The intersection lines of the sphere with the coordinate 
planes �x = 0, �y = 0 and �z = 0 divide the angular domain into cardinal octants. The intersections are great circles and 
thus the octants form spherical triangles. These triangles constitute the set of the level-1 patches. The sides of the first 
level triangles are halved and the midpoints are connected with great circles to split every triangle into four subpatches. 
These make up the set of level-2 patches. This procedure can be repeated recursively to obtain an arbitrarily refined set of 
patches. The above algorithm yields spherical triangles the same as of earlier methods [21,23] based on the projections of 
an octahedron; however, this approach does not need any reference to the flat faces of the octahedron, easing somewhat 
the implementation.

There are other possible tessellations of the sphere available in literature. One such method is through projection of 
a hexahedron onto the sphere. Refinement in this scheme can be forwarded by sectioning the hexahedron hierarchically 
[25]. The disadvantage of this scheme is that on the coarsest level it cannot be used for 2-dimensional calculations where 
only one hemisphere needs to be employed due to symmetry. Another scheme can be based on using the projection of 
the icosahedron (20 faces) on the sphere on the coarsest level and refining these as the spherical triangles in our scheme. 
Although the icosahedral tessellation is very uniform in quality it shares the issue of not being applicable to 2-dimensional 
calculations. Also the coarsest level already contains 20 faces which is a further disadvantage regarding cost.

The angular subdivision of the directional sphere can be described by determining a set P of patch indices such that 
∪p∈P D p ≡ D and D p ∩ Dq ≡ ∅ for ∀ p, q ∈ P where p 	= q. The phase space mesh is obtained by assigning an arbitrary 
angular subdivision Pk to each spatial element Vk . In our scheme different angular subdivisions Pk can be assigned to 
each spatial element Vk , thus arbitrary local angular refinement is allowed at the element level. However, the angular 
refinement must be constant within any such single spatial element, i.e. the angular dependence of the flux is described by 
the same Pk set of patches in each point of spatial element k. Therefore, the phase space elements have two distinct types 
of faces, spatial and angular ones; and particle streaming only occurs on the spatial faces. This restriction largely eases the 
implementation of the method while the local adaptivity of the scheme in phase space is fully maintained.

2.2. Angular basis functions

Five possible sets of basis functions are studied in this paper. All of these sets are chosen such that they are local to the 
patch Dκ by setting �[κ]α(�) = 0 if � /∈ Dκ and thus they can be discontinuous at the patch boundary δDκ . Here �[κ]α(�)

denotes the basis function and κ is the index of the patch while α is the index of the basis function within the set of 

JM Letang 60



Dose & Interactions Convolution based methods Transport equation based methods Beyond physical dose References

Grid-based Boltzmann Solvers
Iterative solution

Discretization of the phase space + Finite difference approximations ⇒ linear
matrix form

A Φ = b

Iterative scheme: “source iteration”
• Series of sweeps for each of the angular quadrants
⇒ From one voxel to the next in the direction of the radiation transport

• 1st complete sweep = unscattered particles fluence,
• 2nd sweep = 1st-scattered particles,
• 3rd sweep = 2nd-scattered particles...
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Grid-based Boltzmann Solvers
Absorbed Dose

Once the electron (and possibly positron) fluence is solved, the dose can be
calculated from the collisional stopping power Sc :

D (r) =
∫

E

∫
4π

Sc

ρ
(r,E) Φe− (r,Ω,E) dΩ dE
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Dose deposition in analog MC

Energy deposition by e−

• discrete when ionization/excitation
• continuous (condensed history)
⇒ step limiter

But also by γ at interaction sites
• particle production cut
• modified process (eg no Fluorescence)
⇒ local energy deposit

16 34. Passage of Particles Through Matter

protons) and by Shen et al. [39] (relativistic pions, kaons, and protons).7
If we define

θ0 = θ rms
plane = 1√

2
θrms

space , (34.15)

then it is sufficient for many applications to use a Gaussian approximation for the central 98% of
the projected angular distribution, with an rms width given by Lynch & Dahl [40]:

θ0 = 13.6 MeV
βcp

z

√
x

X0

[
1 + 0.088 log10( x z

2

X0β2 )
]

= 13.6 MeV
βcp

z

√
x

X0

[
1 + 0.038 ln( x z

2

X0β2 )
]

(34.16)

Here p, βc, and z are the momentum, speed, and charge number of the incident particle, and x/X0 is
the thickness of the scattering medium in radiation lengths (defined below). This takes into account
the p and z dependence quite well at small Z, but for large Z and small x the β-dependence is not
well represented. Further improvements are discussed in Ref. [40].

Eq. (34.16) describes scattering from a single material, while the usual problem involves the
multiple scattering of a particle traversing many different layers and mixtures. Since it is from a fit
to a Molière distribution, it is incorrect to add the individual θ0 contributions in quadrature; the
result is systematically too small. It is much more accurate to apply Eq. (34.16) once, after finding
x and X0 for the combined scatterer.

x

splane

yplane
Ψplane

θplane

x /2

Figure 34.10: Quantities used to describe multiple Coulomb scattering. The particle is incident
in the plane of the figure.

The nonprojected (space) and projected (plane) angular distributions are given approximately
by [35]

1
2π θ2

0
exp


−

θ2
space
2θ2

0


 dΩ, (34.17)

1√
2π θ0

exp

−

θ2
plane
2θ2

0


 dθplane, (34.18)

7Shen et al.’s measurements show that Bethe’s simpler methods of including atomic electron effects agrees better
with experiment than does Scott’s treatment.

31st May, 2024

Multiple Coulomb scattering of charged particles,

from Navas et al. (Particle Data Group) 2024
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Variance Reduction Techniques
McGrath and Irving 1975; García-Pareja, Lallena, and Salvat 2021

• Sampling process (modified particle weights)
▶ Russian Roulette / Splitting
▶ Exponential Transform
▶ Importance Sampling
▶ Interaction Forcing

• Analytical equivalence
▶ Expected values (TLE) → kV imaging dose
▶ Correlated Sampling (same seed between runs)

• Specialized techniques
▶ Sequential sampling (1st low stat analog run then VRT)
▶ Conditional MC

• Source modeling (avoid full MC simulation)
▶ Virtual Energy Fluence (Fippel et al. 2003),

Virtual Photon Source (Sikora, Dohm, and Alber 2007)
▶ Phase Space (Jan et al. 2011)
▶ Alpha-emitters (Sarrut, Etxebeste, and Létang 2024)
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Implementations

• Standard Analog MC
▶ GEANT4 (Allison et al. 2016)
▶ PENELOPE (Salvat 2015)
▶ EGSnrc (Kawrakow et al. 2013)
▶ MCNPX (Waters et al. 2007)

• Ad-hoc Developments
▶ GATE (Sarrut, Arbor, et al. 2022)
▶ GAMOS (Arce et al. 2008)
▶ TOPAS (Faddegon et al. 2020)
▶ SimSET, PeneloPET...

• Optimized MC codes
▶ Photon Voxel Monte Carlo algorithm XVMC (Fippel 1999)

+ GPU adaptation GPUMCD (Hissoiny et al. 2011)
▶ Dose Planning Method DPM (Rodriguez et al. 2018)
▶ BrachyDose, egs_brachy, ALGEBRA, RapidBrachyMCTPS, MCPI,

HDRMC... (see review from Enger, Vijande, and Rivard 2020)
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Ion RT, BNCT

• Same kinds of algorithms extended to proton or carbon ions):
⇒ see the review of Saini et al. 2018 and De Martino et al. 2021

• Cell survival fraction: Linear-Quadratic Model

S = exp
(
−αD − βD2)

where α and β are exposure- and cell- specific parameters representing
the number of lethal events
⇒ α and β must be computed in mixed fields (weighted sums of the
probability distribution of specific energy deposition)

• The Relative Biological Effectiveness (RBE):
▶ Depends on the ion-specific linear energy transfer (LET)
▶ Depends on the cell type (usually HSG is used)

• Various RBE models:
▶ MKM: Microdosimetric Kinetic Model (Sato and Furusawa 2012)
▶ LEM: Local Effect Model (Elsässer et al. 2010)
▶ NanOx: Nanodosimetry and Oxidative stress model (Monini et al. 2020)
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Final remarks

• Accuracy is no longer an issue with Monte Carlo or LBTE methods,
but computation speed is (if used in the TPS optimization)

• Feasibility of MRI-only dose computation
• Time-resolved imaging issues

▶ Organ (heart, lungs) motion: 4DCT...
▶ Temporal biokinetics of injected radionuclides: SPECT...

• Use AI for dose calculations (very active field of research)
⇒ quantification of the AI uncertainty (precision/bias)
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Thank you for your attention
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