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Overview

« Past: Classical image registration
* Present: Learning-based image registration

e Future: ?7??



What is Image Registration?

* Process of finding a spatial transformation that optimally aligns
Image A to image B
— Image A called Source (or floating or moving) image
— Image B called Target (or reference or fixed) image

MRI Target image (B)
PET Source image (A)




What is Image Registration?

 What do we mean by ‘aligned?’

— Establishing correspondence

— Not always obvious what ‘correct’ correspondence is

» Image contain different information,
— e.g. MRl and PET
« Anatomy has changed between images,

— e.g. before and after surgery
« Images are from different subjects



Components of a registration algorithm

Transformation (T)
Cost Function (C)

Optimiser (O)




What is a transformation?

« Spatial mapping between coordinate systems
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« Used to resample (warp) the source image f\
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— Requires interpolation °l° I

— Transformation usually maps from target to source image

 Does NOT necessarily represent physical changes between images



Types of transformation

* Rigid
— Translation, rotation

« Affine
— Rigid, shearing, scaling

« Deformable (non-rigid, non-linear)
— Free-form deformations
— ‘Non-parametric’ (voxel-based)
— Velocity fields
» Often used for diffeomorphic transformations

Initial shape

- 2D-2D, 3D-3D, 4D-4D, 3D-4D, 2D-3D,...



What is a diffeomorphism?

* One-to-one mapping (bijective)
— Transformation has an inverse
— No folding
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Mean of velocity fields

 Transformation and inverse are differentiable
— No discontinuities

* Nice mathematical properties

— Topology is preserved
» Structures preserved
— Composing diffeomorphisms gives a diffeomorphism

— Statistics on velocity fields (Log-Euclidean framework)




What is a cost function?

« Used to measure how good the registration result is

« Composed of two parts:

Source Image \

— One or more similarity measures
» Function of target image and warped source image

» Choice will depend on type of images being registered Target Image Warped Image
— Zero or more penalty (constraint) terms \ Y }
+ Function of transformation parameters .
» Penalises undesirable transformations Similarity measure(s) — penalty term(s)

— Encourages plausible/realistie transformations.
» Different terms used depending on what is considered desirable behaviour

— Often only one similarity measure and zero-to-two penalty terms are used



Similarity measures

 Point/surface based

* Voxel-wise
— SSD, MSD, NCC, MI, NMlI,...
— Locally normalised
« LNCC, LNMI
— Feature/structure based
 MIND, distance maps

* Hybrid



Penalty terms

: : : [ 9T (Xp) 0T (Xn) ]
» Using 1st order derivative ox, T
— Diffusion (L2 norm), Linear energy, Jac(T'(%,)) = i I
— L1 norm OTNaim @) ITNgim n)
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— Log of Jacobian Determinant

_ . Jac(T(®))| > 1
« Using 2" order derivative |
— Bending energy 1> [Jac(T(F))| >0 -
« Encourage transformations to be: Jac(r@)) <0

— Smooth / piece-wise smooth / volume preserving



* Optimisation methods:

— Gradient based methods
« Gradient descent/ascent
» Conjugate gradient
» Other gradient based methods

— Variational calculus
 Partial differential equations

— Discrete methods 0 root node

Optimisation

« Approaches/strategies

— Multi-resolution
— Cropping and masking images
— Symmetric registration

— Inverse-consistent registrations
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» Graph based

— Group-wise registrations




Learning based registrations

« Almost all current research on learning-based registrations

« Learn relationship between images and transformations from
training data

— Can calculate transformation very quickly for new images
— Requires lots of images and computing resources for training

* Training can be:
— Supervised, self-supervised, weakly supervised



Supervised training

- Moving Image

>[ Neural Network ]—'

Fixed Image

* Required ground truth transformation

Output

&

Ground Truth

Transformation Transformation

— Simulation, manual alignment, classical image registration



Self-supervised (unsupervised) training
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Weakly-supervised training

Moving Image
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Weakly-supervised training

Medical Image Analysis 72 (2021) 102139

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media
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Diffeomorphisms

Velocity fields

Multiresolution

Feature-driven

Graph based

4D

Recent(ish) developments:
Inspired by classical image registration

Large Deformation Diffeomorphic Image
Registration with Laplacian Pyramid
Networks

Tony C. W. Mok'™ and Albert C. S. Chung
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Recent(ish) developments:
Inspired by advances in DL

 GANSs and adversarial learning

* Diffusion networks

* Vision transformers

* Uncertainty

DiffuseMorph: Unsupervised Deformable
Image Registration Using Diffusion Model

Boah Kim(, Inhwa Han(®, and Jong Chul Ye(®)
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GANs and adversarial learning

Diffusion networks

Vision transformers

Uncertainty

Deformable Image Registration
Uncertainty Quantification Using Deep
Learning for Dose Accumulation
in Adaptive Proton Therapy

A. Smolders'2®) T. Lomax"2, D. C. Weber!, and F. Albertini
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Recent(ish) developments:
Inspired by advances in DL

TransMorph: Transformer for unsupervised medical image registration

IJunyu Chen®**, Eric C. Frey®®, Yufan He®, William P. Segars®, Ye Li¢, Yong Du?
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Fig. 1: The architecture of the proposed TransMorph registration network.

— Ml step always perfcrrﬁed

-9 [l step performed without existing DIR

- . Step performed with existing DIR
I



Recent(ish) developments:
Others

Unsupervised Non-correspondence Weighted Metamorphosis for Registration
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Recent(ish) developments:
Others

Voxelmorph++

Going Beyond the Cranial Vault with Keypoint
Supervision and Multi-channel Instance Optimisation

Mattias P. Heinrich®™® and Lasse Hansen
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Recent(ish) developments:
Others

NePhi: Neural Deformation Fields

. for Approximately Diffeomorphic
« Changing topology

Medical Image Registration
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The future of medical image registration...

» Less focus on novel methods, more focus on clinical translation
— What are the important clinical applications?
— What do we want the registration to do?

— How do we know if it's doing it?

« Classical or learning based?



Open datasets and challenges
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What do we really want the And how do we know if it’s

registration to do? doing it?
» Application specific » Appropriate metrics for specific
— Clear for some, not for others application

— How will registration be used?

« Commissioning vs QA
* Requires thought

* Applications specific cost/loss
* Need to be precise functions



Classical vs learning-based
registrations

Speed » Generalizability

Computational resources » Use of structures for guiding
registrations

Data requirements
* Hybrid approaches

Flexibility
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Thanks for listening...
...any questions?




